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ABSTRACT 

This paper describes the dynamic models of a circular two-stage parallel inverted 

pendulum, which has been developed for the laboratory experiments. A circular two-stage 

parallel inverted pendulum has two different-length rigid pendulums which are connected to a 

horizontally rotating disc which is attached directly to a DC motor. The derivation of the 

dynamical equations and the linearized model are described. Finally, LQR algorithm is used to 

control the system. 
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1. INTRODUCTION 

Inverted pendulum (Dynamic; Design) is one of widely used apparatus in control 

laboratories to demonstrate the modern control theory applications. The conventional inverted 

pendulum has the structure of the cart-type system, which has the limitation of the cart length. 

For this reason, the circular inverted pendulum was introduced to compensate this restriction. 

Recently, a lot of researches on control of the inverted pendulum system (Real, 2009; 

Fuzzy; Yong, T.L., 1998; Futura and Yamakita, 1992) have been done. It has been known as a 

more difficult problem to derive full mathematical equations and design a controller for double 

inverted pendulum based on its strong nonlinearity and inherent instability. 

The objective of this paper is to obtain the full derivation of the mathematical equations 

based on Lagrange equation, then using LQR algorithm (Adaptive; Model; Huynh Thai 

Hoang, 2006; Nguyen and Huynh, 2006; Nguyen Thi Phuong Ha, 2008) to make the 

system in equilibrium state with two pendulums upwards. 

 

 

 

 

 

 

 

 



 

 

2. CIRCULAR TWO-STAGE PARALLEL INVERTED PENDULUM 

The circular two-stage parallel inverted pendulum are described as the figure bellow (Fig. 1.) 

 

Figure 1. Circular two-stage parallel inverted pendulum 

 

Two pendulums are connected to a rotating disc which is driven by a DC motor. The 

control objective is to balance two pendulums in the upright position. The system variables are 

described as follows. 

 

: The external torque applied to the disc (N.m) 

: The angular displacement of the rotating disc (rad). 

: The 1
st
 pendulum angle with respect to the vertical axis (rad). 

: The 2
nd

 pendulum angle with respect to the vertical axis (rad). 

The system parameters are described in Table 1. 

 

 

 



 

 

Table 1. Parameters of rotary inverted pendulum system 

Parameter Notation Unit 

Inertia of the rotating disc   

Inertia of the 1
st
 pendulum   

Inertia of the 2
nd

 pendulum   

Viscous coef. of rotating disc   

Viscous coef. of the 1
st
 pendulum   

Viscous coef. of the 2
nd

 pendulum   

Mass of the 1
st
 pendulum   

Mass of the 2
nd

 pendulum   

The length of the first pendulum   

The length of the second pendulum   

The radius of the rotating disc   

The gravity constant   

Torque constant   

Back emf. constant   

Resistance in motor circuit   

 

 

 

 

 

 

 

 

 



 

 

2.1.  Nonlinear dynamic model 

The mathematical equation of the system can be derived by using Lagrange equation 

 where  is the kinetic energy, U is the potential energy and  is Rayleigh’s 

dissipation function. The Lagrange equation is as follows. 

                  (1) 

Kinetic Energy 

The total kinetic energy of the system is: 

        (2) 

Where  respectively are the velocities of the center of mass of the 1
st
 pendulum and 

the 2
nd

 pendulum. After calculating, the equation of the kinetic energy is describe as follows. 

   (3) 

 

Potential Energy 

The equation of the system is: 

              (4) 

 

 

 



 

 

Loss Energy 

The loss energy of the system depends on frictional force: 

                (5) 

From (1), (3), (4), (5) we can get the Lagrange equation as follows. 

     (6) 

The system is controlled by a DC servo motor. In case of neglecting the effect of inductor 

in the motor circuit, the relationship between moment  and potential V is given by: 

                  (7) 

From (6) and (7), we obtain the equation of the circular two-stage parallel inverted 

pendulum as: 

                (8) 

where 

          (9) 

                      (10) 

                      (11) 

                      (12) 

                                             (13)  
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                      (15) 

                               (16) 

                          (17) 

and 

  (18) 

          (19) 

          (20) 

 

2.2.  Linearized dynamic model 

Because the control objective is keep two pendulum balance upright, so we can get the 

operation point: . And we know that, if  is small enough: 

  

From then, let  be a state variable, and  be the input, 

we can linearize the equation (8) as below: 

                (21) 

where 

        (22) 



 

 

         (23) 

 

                 (24) 

In the case of the linear system: 

                    (25) 

or 

              (26) 

and quadratic cost functions, the optimal control problem is said to be the linear-quadratic (LQ) 

optimal control problem. Further, for constant-coefficient matrices A and B and terminal time 

infinitely far in the future (meaning, of course, that the operating time is sufficiently long 

compared to the time constants of the system), the problem is referred to as 

the infinite-horizon or infinite-time-to-go problem. In this case, the control law simplifies to: 

                        (27) 

with a constant-coefficient feedback gain matrix K. Matrix K can calculate from the LQR 

fuction: 

K=lqr(A,B,Q,R,N) 

or 

Kd=dlqr(Ad,Bd,Q,R,N) 

Difficulty in finding the right weighting factors limits the application of the LQR based 



 

 

controller synthesis. 

3. USING THE LQR ALGORITHM TO COTROL THE CIRCULAR 

TWO-STAGE PARALLEL INVERTED PENDULUM SYSTEM 

We use Simulink in Matlab to simulate the response of the system when using LQR 

algorithm. Here we assume that the inverted pendulum system is in balance with two pendulum 

uprights, so we can use the linearized equation (21) to find matrix K. We designed a nonlinear 

subsystem of a double inverted pendulum based on equation (8). In this simulation, the system 

is affected by control noise and output noises. The objective of the controller is to keep the 

system in balance when affected by external forces or noises. The simulation diagram is as 

follows (Fig. 2.) 

 

 

 

Figure 2. Simulink model for simulation 

 



 

 

Here we choose the weighting matrix as below: 

      (28) 

Simulation results 

 

Figure 3. The response of the system without noise 

 

 

 

 

 

 

 

 

 

 

 



 

 

Case 2: The response of the system when having noise (Fig. 4.) 

 

 

 

Figure 4. The response of the system with white noises, variance=1e-4 

 

We can see that, the system has quite good responses even if having noise affected. 

Depending on methods of choosing the weighting matrix Q and R, the response of the system is 

different. 

LQR Algorithm with Integral 

To ensure that steady state errors are equal to zero, an integral is added in LQR controller. 

In this case, we have the extended state space equation with seven variables: 

  (29) 



 

 

The simulation of LQR algorithm with integral is as follow: 

 

Figure 5. LQR controller with Integral 

 

The weighting matrix is chosen as below: 

      (30) 

Simulation results 



 

 

 

Figure 6. The response of the system with step signal, variance=1e-4 

 

 

Figure 7. The response of the system with pulse signal, variance=1e-4 



 

 

As we can see in Fig. 6 and Fig. 7, the response of the system can keep track of the step 

input signal and even the pulse input signal.  

 

4. CONCLUSION 

The dynamical equations of the circular two-stage parallel inverted pendulum system were 

derived in this work. Thereafter, the linearized equations were obtained at the specified 

operating points. Then, the LQR algorithm was used to control the system in balance. 
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