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摘要 

  

本文提出一種以過濾方法來告示潛藏於低通過濾後之殘留信號中的重大變

動訊息。由於聲門關閉瞬間是以負波峰的型態出現於處理過的殘留信號，我們

試圖增強和搜尋各式語音信號的負波峰，納入實驗驗證的案例則以一些過去引

發問題的單音節為主，這包括有 /u/、 /m/、 /n/、 /z/、 / /、 /L/ 與 

/h/。而這種方法於白雜訊場合的穩健性亦是我們的探討重點，其效能是以一個

低音階的母音 /u/ 於 10 dB 信噪比的情況作為示範，若與其它三種方法比

較，我們所提出的方法最能在聲門關閉瞬間呈現明顯對比。此外，集合 24 句語

料庫所得到的實驗結果亦指出此法在一般的信噪比環境下的工作情形令人滿

意。 
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Abstract 

 

A filtering method is proposed to signify the epochal feature residing in the lowpass 

filtered residual.  While the glottal closure instant (GCI) manifests itself as a negative 

peak in the processed residual, our method aims at the enhancement and retrieval of 

these peaks for a large variety of speech signals.   The voiced sounds considered in 

our experiments include /u/, /m/, /n/, /z/, / /, //, and //, all of them were reported to 

be problematic.  The robustness in the presence of white Gaussian noise is also under 

our investigation.  Its performance is demonstrated by trying out a low-pitched vowel 

/u/ with SNR = 10 dB.  Compared with three other methods, the proposed method 

produces an evident contrast at the GCI’s.  Furthermore, the results based on a 

database consisting of 24 sentences indicates that this method works well in a moderate 

SNR environment.  The accurate determination of GCI’s not only helps with the 



extraction of acoustic features of speech signals, but facilitates the application of a pitch 

synchronous approach to speech processing. 
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I. Introduction 
 

Linear predictability of speech signals has long been considered an informative 

source to find the glottal closure instants (GCI).  Such an idea emerges from the 

observation that the main excitation for the vocal tract system comes from the abrupt 

closure of glottis.  Since an autoregressive process adequately models the vocal tract 

system, speech samples except for those at GCI’s are describable by a set of linear 

equations.  As a result, the prediction residual obtained by inverse filtering the 

speech signal often exists sharp epoch pulses coinciding with the GCI’s [1,2].  

Methods such as the Frobenius norm [3] and determinant of the autocovariance matrix 

[4,5] originated from the same understanding.  Attempts were also directed to detect 

abrupt changes from a statistic viewpoint [6].   

The above introduction seems to make the prediction residual very attractive in 

identifying the GCI’s.  However, the epoch pulse may be obscured by other spurious 

subpulses due to various reasons, such as noise contamination, vocal turbulence (e.g., 

voiced fricative or sounds with incomplete glottal closure), improper modeling (e.g., 

nasal-tract coupling), and the lack of discriminative predictive errors (e.g., 

sinusoidal-like waveform).  The confusion of the epoch excitations with other 

subpulses makes the unambiguous identification of epochs a very difficult task.  

Thus, restrictions of certain vowels are often imposed on the application of the 

residual signal.  We believe that the restriction is removable through a proper 

interpretation of the residual signal.  To overcome such a drawback, we consider the 

use of filtering operations to signify the most important features of the residual signal 

before extracting GCI information.  Moreover, the proposed epoch determination 

algorithm should cover a large variety of speech signals. 

 

 
II. Usefulness of lowpass filtered residual 
 

In recent years many speech coders accept the lowpass filtered residual or its 



variants as a prevailing tool to acquire pitch periods [7-9].  This is because the 

lowpass filtered residual conveys the information of glottal activities while 

eliminating formant resonances to allow clear pitch estimation.  To determine the 

useful features of the lowpass filtered residual, it is instructive to verify the 

relationship between the residual and the glottal flow function.  According to the 

source-filter theory [10], the production of voiced speech is the result of passing the 

glottal flow through a filter retaining a transfer function of the vocal tract system and 

lip radiation, i.e.,       

 

)()()()( zRzVzGzSv = ,     (1) 

 

where )(zSv , )(zG , )(zV , and )(zR  are the z-transforms of the voiced speech 

signal, glottal pulse, vocal tract system, and lip radiation, respectively.  As the effect 

of lip radiation is generally simulated by a differentiator, an equivalent representation 

for the speech production becomes 

 

    )()()( )1( zVzGzSv = ,      (2) 

 

where )()1( zG  denotes the z-transform of the differentiated glottal pulse.   

Supposed that )(zSv  is corrupted by additive noise )(zW  such that the 

resultant noisy observation )(ˆ zSv  becomes )()( zWzSv + , where )(zW  may refer 

to noise excitation, phase diversion, predictive as well as modeling errors.  Given 

that the inverse filter )(ˆ zA  is derived by carrying out LP analysis of )(ˆ zSv , we 

decompose the reciprocal of )(ˆ zA  into two components: one relates to the spectral 

tilt of the differenticated glottal flow, termed )(ˆ zT , and the other corresponds to the 



estimated vocal tract system, termed )(ˆ zV .  Hence the inverse filtering operation is 

represented as  
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In the above equation, we may assume that the estimated )(ˆ zV  roughly matches 

its counterpart )(zV  and )(ˆ zT  can be approximated by a lowpass filter )(zI .  

Here we choose )(zI  as )95.01(1 1−− z  to render a spectal roll-off rate of –6 

dB/octave.  By multiplying )(zI  on both sides of eqn. 3, we have 
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It is readily seen that the left-hand-side of eqn. 4 explicitly denotes a lowpass 

filter residual (LFR).  The righ-hand-side of eqn. 4 includes the differentiated glottal 

pulse apart from a noise term.  Since the negative peak of a differentiated glottal 

pulse is an evident indicator of a GCI [11], the GCI determination turns out to be a 

procedure of seeking large negative peaks across the LFR.  Furthermore, as the 

energy of the differentiated glottal pulse concentrates in the low frequency region, the 

waveshape of the LFR would not be seriously disturbed unless the noise accumulates 

enough energy at low frequencies.   

 

 
III. Modifications in deriving lowpass filtered residual 

 

Though the foregoing analysis establishes a sensible theoritic basis for GCI 

determination, our experiments with respect to real speech data reveal that the derived 

LFR may not show distinct negative peaks.  The reason can be attributed to the 



assumptions previously made to derive the LFR.  For example, the assumption of 

)(zV  to be an all-pole filter is inadequate for analyzing nasal-like sounds.  The 

assumption that separates )(ˆ zA  into )(ˆ zV  and )(ˆ zT  may be invalid for vowels 

exhibiting strong deceleration of glottal flow during the closing glottis.  Moreover, 

the contaminant noise may also lead to a severe mismatch between )(zA  and )(ˆ zA . 

Thus, we intend to render a signal more suitable for GCI detection by filtering the 

LFR.  An overlap-and-add approach is adopted to facilitate the filtering operations.  

The overlap-and-add algorithm starts from segmenting the speech signal into frames 

of 240 samples.  Each frame is weighted by a Hanning window and overlapped 50% 

with adjacent frames.  A series of filtering operations, as will be discussed shortly, is 

then applied to the LPR to achieve sharper negative peaks.  Advantages due to the 

overlap-and-add approach are multi-fold.  As the Hanning window gently declines to 

zero on frame boundaries, there is no need to concern about filter initialization.  

Likewise, the contribution due to filter memory can be neglected provided that the 

filtering process does not leak too much energy into neighboring frames.   In other 

words, no special care is needed to minimize the startup and ending transients.  

Consequently, the overlap-and-add approach lowers the complexity of the system 

when we apply filtering operations on a frame-by-frame basis.  In addition, the 

smooth transition inherited in the process of overlap-and-add facilitates the 

adjustment of the dynamic range of the filtered output.  Before we pack these 

overlapped frames together, the power of the processed signal is always adjusted to be 

unity.   

Following the signal segmentation and windowing by the overlap-and-add 

technique, there are several modifications when deriving the LFR.  First, a notch 

filter is employed to remove the d.c. component and low-frequency drift from the 

speech signal, thus yielding a zero-mean prediction residual.  Second, we use a 

first-order highpass filter, 1925.01 −− z , to deemphasize the low frequency spectrum 

of the underlying speech signal.  We note that the purpose of preemphasizing the 



speech signal is somewhat different from that originally adopted in speech analysis.  

Our intent is to reduce the strength the glottal flow and, sometimes, the first formant 

so that the subsequent linear prediction analysis does not take the spectral tilt of the 

glottal flow into account.  This, in turn, helps the separation of glottal spectral tilt, 

)(ˆ zT , and the vocal tract system, )(ˆ zV . 

Third, prior to deriving the residual signal, we damp the coefficients of the 

inverse filter by a factor of 0.95.  This is equivalent to passing the actual residual 

with a filter )(zQ  as 
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This filter especially reinforces the spectrum within the formants of narrower 

bandwidths.  The damping effect alleviates the problem of inverse filtering speech 

signal with sinusoidal-like waveforms since it partially retains the sinusoidal 

characteristics.   

Fourth, another notch filter with a broader bandwidth is employed to mildly 

attenuate the low-frequency fluctuation of the differentiated glottal flow.  This 

appears imperative in our experiments.  Depending on the phase characteristics of 

the residual signal, the swinging range of the LFR may extend below the negative 

peaks.  The attenuation of low frequency components can make the negative peaks 

more distinguishable.  Fig. 1 illustrates the effect due to the participation of a 

broadband notch filter.  The speech signal under investigation is a segment of /o/ 

uttered by a male.   

Fifth, while these negative peaks of the LFR is probably smeared by strong 

comtaminant noise, we ameiorate this problem by using a lowpass filter with a 

gradual spectral falloff.  Though a narrow-band lowpass filter with an abrupt spectral 

tilt may effectively subdue the noise, we do not recommand this kind of filters since it 

increases the risk of smoothing out the negative peaks.   



As the above steps are accomplished by means of filtering, a composite filter 

)(zC  with all the functions given in step 2 to 5 can represent the entire filtering task.  

In particular, we would like the phase characteristics to be zero so that the filtering 

opertions do not affect the locations of the negative peaks.  Consequently, we 

process the residual forward and then backward using the same filter.  In our 

experiments, the composite filter )(zC  is chosen as 
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where the part given in the first brackets indicates the damped inverse filter associated 

with lowpass filtering, the part in the second brackets denotes the broadband notch 

filter, and the third part represents a lowpass filter with a broad bandwidth.   

Among the foregoing five steps, the damping effect, in combination of the 

highpass emphasis, offers a solution to identify GCI’s from the sounds with no abrupt 

discontinuity in the glottal flow.  A typical example is given in Fig. 2.  The speech 

signal under investigation is the ending section of a diphthong / wa / uttered by a 

female.  The Fourier spectrum of the speech waveform possesses a predominant 

sinusoidal frequency with no obvious harmonics.  For this type of speech, the 

performance of linear prediction is simply too good to render any evident indication 

for GCI detection.  However, with the involvement of these two modifications, the 

resulting LFR still maintains a similar waveform with negative peaks.  Again, to 

maintain the congruity with our former definition of GCI’s, we take the periodical 

minimums of the modified LFR as the GCI’s. 

 

 
IV. Description of the GCI determination algorithm  

 

Our GCI determination algorithm begins with the linear prediction and inverse 



filtering of speech signals so as to render a modified LFR.  Fig. 3 summarizes all the 

required filtering operations.  As mentioned earlier, searching for the negative peaks 

of the modified LFR is regarded as an effectual way to detect the GCI’s.  However, 

partly due to the fluctuating nature of glottal flow and partly due to the phase 

distortion of inverse filtering, the modified LFR occasionally exhibits false peaks that 

confound with the epoch peaks.  In order to reduce the chance of picking a wrong 

GCI, the proposed algorithm is divided into two stages.  In the first stage, we take an 

interval comprising the current frame and extra 80 nearby samples of adjacent frame 

to perform coarse pitch estimation using the average magnitude difference function 

[12].  A procedure similar to comb filtering [13] in noise reduction techniques is 

then adopted to make the largest negative peak more discernible.  We take this 

negative peak as the first identified GCI.  The rest GCI’s are then obtained by 

finding the minimum locations approximately one pitch period away from the already 

identified GCI’s.  This procedure continues until the searching range is out of the 

current frame by 20 samples. 

 

 
V. Performance evaluation 

 

The efficiency of the proposed method is illustrated by showing the experimental 

results with respect to speech signals that usually cause problems by other methods.  

Cases considered here includes the phoneme transition between /Λ/ and /η/, two 

nasal consonants /m/ and /n/, a voiced fricative /z/, and, and a vowel /u/ which 

contains no abrupt glottal closure.  All the utterances were sampled at 8 KHz with 16 

bit resolution.  The linear prediction order is set to 10.  During the phoneme 

transition from /Λ/ to /η/, the resulting LFR exhibits narrow peaks at GCI’s (see Fig. 

4), thus leading to an easy and unambiguous detection of the GCI’s.  Also note that 

the LFR holds greater similarity than the corresponding speech signal for different 



phonemes.  In this case the effectiveness due to the use of the modified LFR is 

observed. 

For the nasal consonant /m/ presented in Fig. 5, the modified LFR seems not 

affected by nasal-tract coupling since distinct negative peaks has been shown at the 

GCI’s.  We note that the importance of using the residual instead of the speech 

signal can be justified based on the result presented in Fig. 5.  One may argue that 

the GCI’s can be found by directly seeking the negative peaks just in front of large 

positive peaks of the speech signal using simple logical relations.  This argument is 

quite persuasive for the vowels that exhibit abrupt discontinuity in the glottal flow, 

but it is invalid for this type of speech.  Fig. 5 demonstrates such a discrepancy very 

well.  On the other hand, the performance for the nasal /n/ is presented in Fig. 6.  In 

this case, it is almost impossible to identify the epochs directly form the residual 

signal.  The modified LFR, in contrast, shows clear negative peaks around GCI’s.  

For the voiced fricative /z/, the excitation incorporates both voiced and unvoiced 

sources due to incomplete closure of glottis.  As shown in Fig. 7, though the widths 

of the resulting negative peaks in the modified LFR are not so spiky as those observed 

in other voices, the GCI’s can still be identified. 

The last voiced sound considered in the illustration is a high-pitched vowel /u/.  

The resulting modified LFR for the vowels /u/ is noted in Fig. 8.  As pointed by 

other researchers, the lack of abrupt discontinuity in the glottal flow has been known a 

great obstacle, but the modified LFR does not seem to encounter such a problem.   

In addition to the problematic cases discussed above, we also concern about the noise 

sensitivity of the modified LFR.  A low-pitched vowel /u/ serves as a representative 

example since it provides sufficient evidences regarding the advantages of the 

modified LFR.  In this example, we contaminate the vowel /u/ by adding white 

Gaussian noise with signal-to-noise ratio (SNR) set to 10 dB.  For the sake of 

comparison, we also present the results obtained from three other methods, namely, 

the epoch filtering of linear prediction residual (EFLPR) [2], the maximum likelihood 

epoch determination (MLED) [14], and the Frobenius norm (FN) [3].  The 



autocorrelation method of order 10 are adopted to carry out the LP analysis.  Settings 

required by the other three methods follow those given in the original papers.  

Furthermore, in order not to mislead the reader’s judgement, procedures that were 

previously employed to produce more pulse-like signals are disallowed. 

Fig. 9 shows the results of GCI determination for the noise-contaminated vowel 

/u/.  It is seen that the EFLPR simply fails to offer any indication.  The FN 

responses with pulse-like signals near the GCI's, but a certain degree of ambiguity 

exists between epoch pulses and other subpulses.  On the other hand, the MLED 

provides rather useful information by showing hunches around the GCI’s.  The 

performance of the modified LFR is also satisfying, although it exhibits less clear 

negative peaks around GCI's. 

The ability of signifying the primary excitation pulses in moderate SNR’s 

demonstrates the robustness of the proposed method.  For most cases encountered in 

a noise-free or moderate SNR environment, the modified LFR is quite efficient for 

detecting the GCI’s.  However, the derived LFR still suffers more or less 

purturbation in the presence of strong noise.  Cheng and O’shaughnessy suggested to 

take the Hilbert envelope of the speech signal to construct a selection signal [14].  

This selection signal in conjunction with the MLED was reported to consititute a 

robust algorithm for GCI determination.  In fact, the EFLPR has took advantage of 

the Hilbert transform while processing the residual signal.  In this paper, we do not 

incline to exploit this feature based on two reasons: 1) the Hilbert transform is 

computational expensive as compared to filtering operations, and 2) an empirical 

adapation in time-shifting is required.  The Hilbert envelope with respect to the 

lowpass filtered speech signal presented in Fig. 9 is only for the purpose of better 

illustration.   

Our attention in the following discussion, instead, turns to the noise influence to 

the modified LFR based on measured pertubation.  A data base consisting of four 

Mandarin sentences spoken by six speakers (three males and three females) is under 

our study.  A total of 9392 GCI’s are identified from clean speech signals by using 



the proposed algorithm and verified by visual inspection.  We use these GCI’s as 

reference points for judging.  Fig. 10 shows the mean absolute differences (MAD) 

between the reference GCI’s and the GCI’s extracted from noisy speech with the 

SNR’s in the range of 0-30 dB.  On the other hand, Fig. 11 presents the proportion of 

the deviation within a scope between –2 and 3 samples to the entire number of GCI’s.  

The deviation scope considered here is asymmetric around zero since the distribution 

of the differences of the GCI positions tends to have a positive mean.  While the 

MAD reflects the consequence of noise perturbation, the percentage within the 

designated deviation range implies the reliability of the modified LFR in the presence 

of various levels of noise.  The degrading accruacy in low SNR’s reflects the 

limitation of the modified LFR in GCI extraction.  In accordance with the results 

shown in Figs 10 and 11, it is appropriate for us to come up with a conclusion that the 

modified LFR is capable of carrying out GCI detection with moderate SNR’s.  A 

detailed anlysis reveals that the degraded performance in low SNR’s can also be 

ascribable to the incompetence in obtaining an accurate inverse filter.  While errors 

due to the inverse filtering affect an entire frame of the modified LFR, such errors 

certainly lead to misjudgement of GCI in a domino effect.  Hence further 

adjustments and refinements of the modified LFR seems indispensible in case the 

speech signals are severely corrupted by noise.  However, we have to point out that 

the miss of GCI locations does not means the loss of pitch tracking.  As illustrated in 

Fig. 11, the modified LFR exhibits rather clear periodicity even though there appear 

several false negative peaks. 

 

 
VI. Conclusions 

 

In this paper we revisit the topic of glottal closure detection by taking advantage 

of the lowpass filtered residual.  The proposed method takes various aspects of the 

residual into consideration for signifying the epochal features of the residual signal.  



The use of an overlap-and-add approach smoothes the transition of the filtered output 

across frames, and allows the adjustment of signal power to achieve steady amplitude.  

The processes that constitute a modified LFR for better GCI identification include the 

damped inverse filtering, broadband notch filtering, and broadband lowpass filtering.  

We illustrate the effectiveness of the modified LFR using several problematic sounds, 

which comprise /Λ/, /η/, /m/, /n/, /z/, / wa /, and /u/.  The robustness of the proposed 

method is demonstrate by examining a low-pitched vowel /u/ in the presence of white 

Gaussian noise with SNR = 10 dB.  The proposed method performs satisfactorily 

well while compared with other methods.  Our experiments based on a data set 

consisting of 24 sentences also indicate that the proposed method is capable of 

achieving reliable GCI detection under a noise-free or moderate SNR condition.  The 

satisfying performance in GCI identification thus provides a powerful tool to support 

the pitch-synchronous analysis, text-to-speech synthesis, and prosodic modifications 

by means of the PSOLA technique [15].  Furthermore, as the essential computations 

for deriving the modified LFR involve only simple filtering operations, the affordable 

computational cost allows the proposed method to be easily incorporated into a 

real-time speech coder that exploits the glottal features [16,17].   
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Fig. 1.  Effect due to the broadband notch filter; from top to bottom: the speech 

signal /o/, lowpass filtered residual with and without notch filtering. 
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Fig. 2.  Effect due to the highpass emphasis and damped inverse filtering; from top 

to bottom: the speech signal / wa /, lowpass filtered residual with and without 

highpass preemphasis and damped inverse filtering. 
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Fig. 4.  GCI detection for phoneme transition between /Λ/ and /η/; from top to 

bottom: the speech signal, the residual signal, and the modified LFR. 
 


