
等同效率用於分析線性擴展記憶空間之平行電腦的延展性之探討

file:///F|/14cg91e.htm[2017/3/6 下午 02:38:14]

等同效率用於分析線性擴展記憶空間之平行電腦的
延展性之探討

林作俊

國立宜蘭技術學院電子工程系副教授

摘 要

研究顯示給予一個可延展平行電腦夠多的資料量，它的運算效率可以維持在一個常數。這樣的特性，對於在有限的時間內解決運算複雜且資料

量龐大的問題提供了美好的前景。在[1,2]中，作者提出等同效率函數用以分析平行電腦的延展性。然而他們的分析中忽略了記憶體對延展性的影

響。在此篇論文中，我們以等同效率函數為基礎，提出在有限的記憶資源中分析平行電腦延展性的方法。我們所獲得的結論如下：當平行電腦之每

個運算模組的記憶體容量固定時且該平行電腦的執行效率必須維持在一個常數時，此平行電腦之運算模組的數量不一定可以無限制的擴展。

關鍵詞：延展性、等同效率、平行電腦、記憶空間

On the Isoefficiency Analysis of Parallel

Computers with Linearly Scale-up Memory

Space

 Cho-Chin Lin

 Associate Professor, Department of Electronic Engineering, National Ilan Institute of

Technology

Abstract

A scalable parallel machine may maintain its efficiency constant by increasing the amount of input data. Thus,

it has the opportunity to challenge the applications of large scale. In [1,2], isoefficiency function has been

proposed as a measure of scalability. However, their analysis ignored the amount of memory in a parallel machine.

In this paper, the isoefficiency function of a parallel machine with memory constraint is proposed. Our result

shows if the amount of memory of a parallel machine is linearly proportional to the number of processing nodes

and the efficiency needs to be maintained at a desired level, then, the maximal number of processing nodes of the

system may be bounded. This implies that the amount of available memory also affects the scalability of the

system.

Key Words：Scalability, Isoefficiency, Parallel Computer, Memory Space

139

I. Introduction

Since computers were developed, they have been employed to assist human being in handling daily events. Many of the

applications concerning the issues of human welfare and the science leading to a better living environment need a large

volume of computations. For exa mple, the goal of improving atmospheric modeling resolved to a 5-km scale and providing

timing result is believed to require 20 TFLOPS of performance [4]. In addition, several applications require petascale

computing was also identified in the report of US President’s IT Advisory Committee [7]. Examples are:

Before the technologies of non-conventional computing paradigms, such as quantum computation or DNA computing [8,9],

become mature, von Neumann model [10] has been the major stream of building a sequential computer. However, we know

that most powerful sequential computers of today cannot meet the computational requirement needed to implement the

applications [12]. Thus, it is obvious that substantial progress in computing technology is still necessary for developing high

performance computing platform in order to make a serious attack on the applications.

The advance in the microprocessor and memory technologies impacts the speed of a computer. The performance of a

microprocessor is advancing at a rate of 50 to 100% per year [5,11]. Today, the state-of-the-art microprocessors can have

computation speed up to hundreds of MFLOPS [12]. In addition to that, memory capacity is increasing at a rate comparable

to the increase in capacity of DRAM chips: quadrupling in size every three years [6]. Current personal computers or

workstations use hundreds of Mbytes. It seems that substantial progress has been achieved in sequential computer technology.

However, the performance of the computer still cannot meet the applications of increasing complexity. Thus, scalable

architectures, which employ parallel processing technology to accelerate the processing speed, have been proposed to meet

the computational requirements.

Scalable architectures have the opportunity to challenge the applications of large scale. One of the architectural

solutions for achieving scalability is the parallel machine of distributed memory. It is formed by combining essentially

complete processing nodes through a network. A complete processing node consists of memory modules and a number of

processors. Those nodes communicate by exchanging data through the network. In general, high speedup can be achieved by

appropriately partitioning the data into several sets and mapping the sets to each of the processing nodes according to the

computational characteristics of the applications. MPMD and SPMD are the programming paradigms employed in the

parallel machines [14]. Standards for supporting such programming paradigms, for examples, are PVM and MPI.

To capture the performance behaviors of parallel machines, various performance models have been proposed based on

different focus. Three performance models based on speedup metrics are: Amdahl’s law, Gustafson’s Law, and Sun and Ni’s

Law [13]. Amdahl’s Law states that the maximal speedup achievable by a parallel computer is bounded by the ratio of the

sequential portion to the parallel portion in a parallel program. It implies that there is an upper bound on the speedup of a

parallel computer running an application of a fixed input size. However, there are many scientific problems concerning the

precision of the results instead of accelerating the time needed to derive the results. In general, the more precise the result is,

the larger the input size will be. Gustafson’s Law states that substantial speedup can be achieved by increasing the input size

of a problem to fully utilize the processing nodes. Sun and Ni’s Law states that the amount of memory space of a parallel

machine puts an upper bound on the speedup of the parallel computer. The scalability of a parallel algorithm on parallel

architectures is used to measure how easily the linear speedup can be achieved as the number of processing nodes increases.

In general, mapping a parallel algorithm to parallel architectures leads to various speedups tendencies. It implies that the

evaluation of the performance of a parallel computer should consider the interaction between parallel algorithms and parallel

architectures. However, the above metrics do not consider the effect of various mapping techniques. Thus, isoefficiency is

proposed for scalability analysis in [2,3]. It has been used to show that a parallel computer may maintain its efficiency

constant by increasing the amount of input data for a parallel algorithm. However, their analysis ignored the available

memory in a computer. In this paper, the isoefficiency function of parallel architectures with linearly scale -up memory is

analyzed. Our result shows that although the isoefficiency function for a parallel architecture exists, the efficiency may not be

l Climate and environmental modeling

l 3D protein molecule reconstruction

l Design of advanced aircraft

l Intelligent planetary spacecraft

l Severe storm forecasting

l Real-time medical imaging

l Nuclear weapons stewardship

l Molecular nanotechnology

宜蘭技術學報 第九期電機資訊專輯

140

maintained at a desired level when the number of processing nodes is increased beyond a particular limit. It implies that the

scalability measurement should consider memory size of a processing node as well as the mapping techniques.

 In this paper, background related to isoefficiency measurement is given in Section 2. In Section 3, the definition of

expansion range is given and a methodology for deriving the expansion range is also proposed. Some interesting observations

and discussions are given in Section 4. Conclusions are made in Section 5.

II. Background

In [1,2], the authors stated that the scalability of a parallel algorithm on a parallel architecture is a measure of its

capability to effectively utilize an increasing number of processing nodes. Thus, they developed a scalability metric called

isoefficiency function. The function denoted as f(p) relates the problem size to the number of processing nodes p . The

function illustrates the tendency in increase of problem size in proportion to the number of processing nodes used in an

application. The relationship between the isoefficiency function of an algorithm-architecture pair and some performance

measures has been shown in [2]. In the following, we denote the term system to be an algorithm-architecture pair. The

isoefficiency function can be used to measure how easily a system is able to achieve linear speedup as the number of

processing nodes increases. Assume the isoefficiency of system S1 is fS1(p) and the isoefficiency of system S2 is fS2(p). If

fS1(p)=Ω(fS2(p)), then the scalability of system S1 is no better than that of system S2 . Figure 1 illustrates this. In Figure 1,

Systems A, B, and C have isoefficiency functions fA(p)=p , fB(p)=plog p , and fC(p)=p2. We can observe that as the number of

processing nodes is increased, the amount of data size needed by system C to maintain efficiency at a desired level is larger

than systems A and B. The isoefficiency function of a system depends on the computation time, the communication time and

the synchronization time. In general, the isoefficiency function can be computed by using the following equation:

),,(
)(*

npATp
nTE

×
= (1)

where

l E is the efficiency of the system.

l T*(n) is the amount of computation time taken by an optimal sequential algorithm with input size equal to n .

l T(A, p , n) is the computation time of a parallel algorithm A on a parallel computer with p processing nodes. The

algorithm A is not necessary to be an optimal algorithm.

Since T*(n) is the amount of computation time taken by an optimal sequential algorithm, there should be no redundant work

performed by T*(n). However, many parallel algorithms need to perform more steps of computations than an optimal

algorithm does in order to reduce the number of parallel computation steps. Thus, the order of magnitude of T*(n) should be

the lower bound of p×T(A, p , n). It implies that isoefficiency may not exist for certain systems.

 However, in many situations, we do not consider asymptotically optimal algorithm in program design. One of the

examples is Strassen’s Algorithm [18]. The algorithm, which is asymptotically the most efficient algorithm for multiplying

n×n matrices to date, has time complexity Θ(n log 7). It is much better than normal matrix multiplication algorithm, which has

time complexity of Θ(n3). However, the normal matrix multiplication algorithm is the skeleton used for most parallel matrix

multiplication design. It implies that when we consider isoefficiency function for scalability measurement, the base algorithm

for comparison is not necessary to be an optimal algorithm. Some operations, which are unnecessary for an optimal

sequential algorithm such as making several copies of a shared datum, may be performed in a parallel algorithm. Although it

takes several steps to perform such operations, the execution time may be reduced. Let T(1,n) be the time taken by a single

processing node system to simulate the computations performed by a parallel system. Inter-processor communication and

synchronization do not appear in the computations of the system with single processing node. Thus, the computations

performed in T(1,n) time units are pure computations. An alternate definition of efficiency which uses T(1,n) and T(A, p , n) is

defined as follows:

宜蘭技術學報 第九期電機資訊專輯

141

),,(
),1(

npATp
nTE

×
= (2)

The isoefficiency function derived by using Equation (2) shows how well the pure computations of an algorithm can be

paralleled. The alternate definition of efficiency uses T(1,n) as a base. Thus, we denote the isoefficiency function derived by

this definition as the absolute isoefficiency function. The advantage of taking the absolute isoefficiency function as a

scalability measure is as follows: for a parallel algorithm which can solve a problem in a small period of time by using larger

amount of operations (than those performed by an optimal sequential algorithm), the isoefficiency function still exists. In

contrast to the absolute isoefficiency function, the definition in Equation (1) is called relative isoefficiency function. In the

following analysis, we use absolute isoefficiency function instead of relative isoefficiency function to measure the scalability

of a system.

 In [2], the authors also defined the Memory Overhead Factor (MOF) for an algorithm-architecture pair. The memory

overh ead factor is the ratio of the total memory required by all the processing nodes to the amount of memory required for

the same problem size on a single processor. Note that the problem size is measured based on the amount of computations

needed to be perfo rmed by the system to derive the result.

 III. Isoefficiency with Memory Constraint

In the design of a parallel algorithm, mapping data and program partitions to processing nodes of a parallel system is an

important issue. Employing an appropriate mapping strategy can enhance the performance of the parallel system. Two types

of computations, global computation and local computation, have been mentioned in [16]. Global computation uses

distributed local memories as a large shared memory in which the data is distributed and shared. The computations are

referred to as local computations, when the memory within a processing node is only used by the node during computations.

For some applications, the communication time and the synchronization time can be reduced by distributing several copies of

the same program or data to each of the processing nodes and concurrently perform the computations. That is, we may be

able to reduce the communication and synchronization overhead of a distributed memory system by using local computation

instead of global computation. The isoefficiency function of such a system may improve. However, the number of copies

may increase in proportion to the number of processing nodes. It may occur that the memory of the system can be used up

quickly due to multiple copies of data or programs. This implies that we need to consider the memory size constraint of a

parallel computer, when the isoefficiency function of the system is computed. The following equation is used to illustrate the

fact given by the above observations.

 MEMarch(p) ≥ MEMalg(n) (3)

where,

l MEMalg(n) is the amount of memory needed by the algorithm alg to implement an application. It is a function of

input size n .

l MEMarch(p) is the amount of available memory space provided by the parallel architecture arch . It is a function of

the number of processing nodes p of a parallel computer.

If we combine Equations (2) and (3) then we see that the number of processing nodes of a system should be bounded. If the

number of processing nodes exceeds this bound, then it is impossible for the system to maintain constant efficiency. We call

this range the expansion range of a parallel system.

 In the followings , we use all-pairs -shortest-path problem as an example to illustrate that the amount of memory of a

parallel machine can affect the scalability of a system. In our example, all-pairs -shortest-path problem is solved by Parallel

Floyd Algorithm (checkerboard version) running on a hypercube parallel computer. Assume there are n cities to be

considered. Thus, the input to the computer is the relative distances of the n cities. The information of the distances between

any pair of cities is stored in a matrix of size n2. In the algorithm, the matrix is partitioned to p squares of size (n/p1/2)× (n/p1/2)

and each square is mapped to one of the p processing nodes. It is easy to derive the parallel running time of the algorithm is

宜蘭技術學報 第九期電機資訊專輯

142














Θ+





Θ= p

p

n
p

n
T p log

23

The first term is the computation time and the second term is the communication time. By employing Equation (2), we can

derive that the absolute isoefficiency function is Θ(p1.5(log p)3). Interested readers should refer to [3] for details. Since the

information of relative distances between all pairs of the cities is stored in a matrix of size n2, the amount of memory needed

by the algorithm is as follow:

MEMalg(n) = Θ (n2) (4)

Assume each node of the hypercube computer has memory size of m units. Since the memory space increases in linear

proportion to the number of processing nodes of the parallel computer, the amount of memory space provided by the parallel

computer is as follow:

)()(mppMEM arch Θ= (5)

According to Equations (3), (4) and (5), we have,

)(2nmp Ω= (6)

The work size W is defined as the amount of computation needed to derive the result of a problem. Thus, the W of the

shortest path problem is n3. Then, we have the following equation:

W=Θ(p1.5(log p)3).

It implies that n2=Θ(p(log p)2). By substituting n2 in (6), we have:

)2(mOp =

The equation suggests that linear speedup can be achieved by expanding the system from a single processing node to p

processing nodes of m memory units , where)2(mOp = . If we use more than p processing nodes, then efficiency cannot be

maintained constant (i.e. linear speedup is not possible) due to insufficient memory space.

IV. Observations and Discussions

Based on the above analysis, we consider the expansion range of the parallel systems listed in [3]. The results are shown

in Table 1. From Table 1, we can observe some interesting results. Some systems with good isoefficiency function may have

smaller expansion range; however, some systems with poor isoefficiency function have larger expansion range. For example,

Floyd Checkerboard on Cube (System S1):
 isoefficiency function).)(log()(35.1

1 pppf S Θ=

 Expansion range is)2 (mO

Dijkstra Source_Parallel on Cube (System S2):

 isoefficiency function).)log(()(5.1
2 pppf S Θ=

 Expansion range is 







3

2

)(logm
m

O

The isoefficiency function of System S1 is poorer than that of System S2. However, the expansion range of System S1 is

larger than that of System S2. Speedup of a system is equal to efficiency × number of processing nodes. Assume Systems S1

and S2 need to maintain efficiency at some desired level. Then, System S1 has a larger expansion range and can achieve

higher speedup.

宜蘭技術學報 第九期電機資訊專輯

143

V. Conclusion and Future Direction

In this paper, we have shown that although the isoefficiency function of a system exists, it cannot maintain constant

efficiency for any number of processing nodes exceeding its expansion range. This paper also shows that a system that needs

to maintain efficiency at some desired level but has poorer isoefficiency function may have larger expasion range that leads

to a higher speedup. In the future, we will extend our scalability analysis to the hetrogeneous clusters in which the memory

may scale up non-linearly.

Acknowledgment

This research was supported by the National Science Council, Taiwan, ROC, under Grant NSC91-2213-E-197-003.

References

1. Anshul Gupta and Vipin Kumar (1992), “Analyzing Performance of Large Scale Parallel Systems,” Technical Report

92-32. Department of Computer Science, University of Minnesota .

2. Vipin Kumar and Anshul Gupta (1991), “Analyzing Scalability of Parallel Algorithms and Architectures,” Technical
Report. June, Dept. of Computer Science, University of Minnesota .

3. Vipin Kumar and Vineet Singh (1991), “Scalability of Parallel Algorithms for the All-Pairs Shortest-Path Problem,”

Journal of Parallel and Distrubuted Computation 13, pp. 124-138.

4. Howard J. Siegel et al. (1992), “Report of the Pu rdue Workshop on Grand Challenges in Co mputer Architecture for the

Support of High Performance Computing,” Journal of Parallel and Distributed Computing .

5. IEEE Symposium Record – Hot Chips IV (1992) August.

6. J. L. Hennessy and D. A. Patterson (1990), Computer Architecture – A Quantitative Approach, Morgan Kaufmann.

7. Jack J. Dongarra and David W. Walker (2001), “The Quest for Petascale Computing,” IEEE Computing in Science and

Engineering , vol. 3, no. 3, pp. 32-39.

8. R. Hughes (2001), “Quantum Computation,” IEEE Computing in Science and Engineering , vol. 3, no. 2, pp. 26.

9. Albert Y. Zomaya, James A. Anderson, David B. Fogel, Gerard J. MilBurn, and Grzegorz Rozenberg (2001),

“Nonconventional computing paradigms in the new millennium: a roundtable,” IEEE Computing in Science and
Engineering , vol3, no. 6, pp. 82-99.

10. David A. Patterson and John L. Hennessy (1994), Computer Organization & Design: The Hardware/ Software Interface,

Morgan Kaufmann Publishers.

11. Sriram Vajapeyam and Mateo Valero (April 2001), “Early 21st Century Processors,” IEEE Computer , pp. 47-50.

12. J. J. Dongarra (2002), “Performance of Various Computers Using Standard Linear Equations Software, (Linpack

Benchmark Report),” University of Tennessee, Computer Science Technical Report.
13. Kai Hwang and Zhiwei Xu (1997), Scalable Parallel Computing: Technology/Architecture/Programming,

McGRAW-HILL International Editions.

14. Barry Wilkinson and Michael Allen (1999), Parallel Programming: Technology and Applications Using Networked

Workstations and Parallel Computers, Prentice Hall.

15. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001), Introduction to Algorithms, 2nd

Edition, The MIT Press.

16. X. -H Sun and Lionel M. Ni (1990), “Another View on Parallel Speedup,” In Proceedings of Supercomputing '90, pp.

324-333.

91年 09月 09日投稿

91年 09月 30日接受

宜蘭技術學報 第九期電機資訊專輯

144

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

the number of processing nodes

th
e

am
ou

nt
 o

f
w

or
k

ne
ed

ed
 to

 m
ai

nt
ai

n
ef

fi
ci

en
cy

 c
on

st
an

t

System C

System B

System A

Table 1 Comparison of the expansion of various algorithm-architecture pair.

Base
alg.

Parallel Variant Architecture Isoefficiency MOF Expansion Range
Dijkstra Source-Partition Hypercube,

Mesh
3p p)(5.0mΟ

Dijkstra Source-Parallel Hypercube 5.1)log(pp n))/(log(32 mmΟ
 Mesh 8.1p n)(25.1mΟ

Floyed Stripe Hypercube 3)log(pp 1))/(log(2mmΟ
 Mesh (SF) 5.4p 1)(5.0mΟ
 Mesh (CT) 3)log(pp 1))/(log(2mmΟ

Floyed Checkboard Hypercube 35.1)(logpp 1)2(mΟ
 Mesh (SF) 3p 1)(mΟ
 Mesh (CT) 25.2p 1)(2mΟ

Floyed Pipeline
Checkerboard

Hypercube,
Mesh

5.1p 1 ∞

Fig 1 The isoefficiency functions of Parallel Systems A, B, and C.

宜蘭技術學報 第九期電機資訊專輯

145

