FRIEE R R DR R IR ZE AT R AR R I PR

L]

=H
=
PN
\3v
N

A A 2
Ny ¥ ‘L
= P\?- I

o

K LSV RAMIEE R T F L T F

.L«

444 14

EARVAEL s e e R N1 E 6d

B}

BN T — (BT TR AL VAR E - ERVERSER T DIMERME—(EH R - StRavRtE - B ER IRV R A s B H &
ERERIVHRETR ML T RFATATE o AE[L2]F - (FE RN EERCR B DT AT EASAVE R o ZAM L MIEy 34 o 2SR R AR R A
& - et > PILIFEFRBCRE RARE - R ARV T T P TR TR A % - RMIFTEGHSERD T - B PTENCE
(LA FY SO IR A A B B R ELRZ 1T BBV TR AR R — (B0 I AT RS B AR A A BE —E] DA R -

R - LRl - FEFERCR - SPATER - SIEEM

file:///F|/14cg91e.htm[2017/3/6 T 02:38:14]

On the Isoefficiency Analysis of Parallel
Computers with Linearly Scale-up Memory
Space

Cho-Chin Lin

Associate Professor, Department of Electronic Engineering, National Ilan Institute of
Technology

Abstract

A scalable parallel machine may maintain its efficiency constant by increasing the amount of input data. Thus,
it has the opportunity to challenge the applications of large scale. In [1,2], isoefficiency function has been
proposed as a measure of scalability. However, their analysis ignored the amount of memory in a parallel machine.
In this paper, the isoefficiency function of a parallel machine with memory constraint is proposed. Our result
shows if the amount of memory of a parallel machine is linearly proportional to the number of processing nodes
and the efficiency needs to be maintained at a desired level, then, the maximal number of processing nodes of the
system may be bounded. This implies that the amount of available memory also affects the scalability of the
system.

Key Words : Scalability, Isoefficiency, Parallel Computer, Memory Space

|. Introduction

Since computers were developed, they have been employed to assist human being in handling daily events. Many of the
applications concerning the issues of human welfare and the science leading to a better living environment need a large
volume of computations. For exanple, the goal of improving atmospheric modeling resolved to a 5-km scale and providing
timing result is believed to require 20 TFLOPS of performance [4]. In addition, severa applications require petascale
computing was a so identified in the report of US President’ s1T Advisory Committee [7]. Examples are:

Climate and environmental modeling
3D protein molecule reconstruction

Severe storm forecasting
Real-time medical imaging

Design of advanced aircraft Nuclear weapons stewardship

Intelligent planetary spacecraft Mol ecular nanotechnol ogy

Before the technologies of hon-conventional computing paradigms, such as quantum computation or DNA computing [8,9],
become mature, von Neumann model [10] has been the major stream of building a sequential computer. However, we know
that most powerful ssquential computers of today cannot meet the computational requirement needed to implement the
applications[12]. Thus, it is obvious that substantial progressin computing technology is still necessary for developing high
performance computing platformin order to make aserious attack on the applications.

The advance in the microprocessor and memory technologies impacts the speed of a computer. The performance of a
microprocessor is advancing at a rate of 50 to 100% per year [5,11]. Today, the state-of-the-art microprocessors can have
computation speed up to hundreds of MFLOPS [12]. In addition to that, memory capacity is increasing at a rate comparable
to the increase in capacity of DRAM chips: quadrupling in size every three years [6]. Current persona computers or
workstations usehundreds of Mbytes. It seemsthat substantial progress has been achieved in sequential computer technology.
However, the performance of the computer still cannot meet the applications of increasing conplexity. Thus, scalable
architectures, which employ parallel processing technology to accelerate the processing speed, have been proposed to meet
the computational reguirements.

Scalable architectures have the opportunity to challenge the applications of large scale. One of the architectural
solutions for achieving scalability is the parallel machine of distributed memory. It is formed by combining essentialy
complete processing nodes through a network. A complete processing node consists of memory modules and a number of
processors. Those nodes communicate by exchanging data through the network. In general, high speedup can be achieved by
appropriately partitioning the data into several sets and mapping the sets to each of the processing nodes according to the
computational characteristics of the applications. MPMD and SPMD are the programming paradigms employed in the
parallel machines[14]. Standards for supporting such programming paradigms, for examples, are PVM and MPI.

To capture the performance behaviors of parallel machines, various performance models have been proposed based on
different focus. Three performance models based on speedup metrics are: Amdahl’ slaw, Gustafson’ sLaw, and Sunand Ni’ s
Law [13]. Amdahl’ s Law states that the maximal speedup achievable by a parallel computer is bounded by the ratio of the
sequential portion to the parallel portion in a parallel program. It implies that there is an upper bound on the speedup of a
parallel computer running an application of afixed input size. However, there are many scientific problems concerning the
precision of the results instead of accelerating the time needed to derive the results. In general, the more precise theresult is,
the larger theinput size will be. Gustafson’ s Law states that substantial speedup can be achieved by increasing theinput size
of a problem to fully utilize the processing nodes. Sun and Ni’ s Law states that the amount of memory space of a parallel
machine puts an upper bound on the speedup of the parallel computer. The scalability of a parallel algorithm on parallel
architecturesis used to measure how easily the linear speedup can be achieved as the number of processing nodes increases.
In general, mapping a parallel algorithm to parallel architectures leads to various speedups tendencies. It implies that the
evaluation of the performance of aparallel computer should consider the interaction between parallel algorithms and parallel
architectures. However, the above metrics do not consider the effect of various mapping techniques. Thus, isoefficiency is
proposed for scalability analysis in [2,3]. It has been used to show that a parallel computer may maintain its efficiency
constant by increasing the amount of input data for a parallel algorithm. However, their analysis ignored the available
memory in a computer. In this paper, the isoefficiency function of parallel architectures with linearly scale-up memory is
analyzed. Our result shows that although the isoefficiency function for aparallel architecture exists, the efficiency may not be

139

maintained at a desired level when the number of processing nodes is increased beyond a particular limit. It implies that the
scal ability measurement should consider memory size of a processing node aswell asthe mapping techniques.

In this paper, background related to isoefficiency measurement is given in Section 2. In Section 3, the definition of
expansion rangeis given and a methodol ogy for deriving the expansion rangeis also proposed. Some interesting observations
and discussions are given in Section 4. Conclusions are made in Section 5.

Il. Background

In [1,2], the authors stated that the scalability of a parallel algorithm on a parallel architecture is a measure of its
capability to effectively utilize an increasing number of processing nodes. Thus, they developed a scalability metric called
isoefficiency function. The function denoted as f(p) relates the problem size to the number of processing nodes p. The
function illustrates the tendency in increase of problem size in proportion to the number of processing nodes used in an
application. The relationship between the isoefficiency function of an algorithm-architecture pair and some performance
measures has been shown in [2]. In the following, we denote the term system to be an algorithm-architecture pair. The
isoefficiency function can be used to measure how easily a system is able to achieve linear speedup as the number of
processing nodes increases. Assume the isoefficiency of system S, is fg(p) and the isoefficiency of system S; is fo(p). If
fa1(p)=W(fo(p)), then the scalability of system S; is no better than that of system S,. Figure 1 illustrates this. In Figure 1,
Systems A, B, and C have isoefficiency functions fa(p)=p, fz(p)=plogp, and f(p)=p?. We can observe that as the number of
processing nodes is increased, the amount of data size needed by system C to maintain efficiency at a desired level islarger
than systems A and B. The isoefficiency function of a system depends on the computation time, the communication time and
the synchronization time. In general, the isoefficiency function can be computed by using the following equation:

T (n)
p” T(A p,n)

(1)
where

) E istheefficiency of the system.
T'(n) isthe amount of computationtimetaken by an optimal sequential algorithm with input size equal ton.

° T(A, p, n) is the computation time of a parallel algorithm A on a parallel computer with p processing nodes. The
algorithm A is not necessary to be an optimal algorithm.

Since T'(n) is the amount of computation time taken by an optimal sequential algorithm, there should be no redundant work
performed by T (n). However, many parallel agorithms need to perform more steps of computations than an optimal
algorithm does in order to reduce the number of parallel computation steps. Thus, the order of magnitude of T'(n) should be
the lower bound of p” T(A, p, n). Itimplies that i soefficiency may not exist for certain systems.

However, in many situations, we do not consider asymptotically optimal algorithm in program design. One of the
examples is Strassen’ s Algorithm [18]. The agorithm, which is asymptotically the most efficient algorithm for multiplying
n" n matrices to date, hastime complexity Q(n'®7). It is much better than normal matrix multiplication algorithm, which has
time complexity of Q(n®). However, thenormal matrix multiplication algorithm is the skeleton used for most parallel matrix
multiplication design. It impliesthat when we consider isoefficiency function for scalability measurement, the base algorithm
for comparison is rot necessary to be an optimal algorithm. Some operations, which are unnecessary for an optimal
sequential algorithm such as making several copies of ashared datum, may be performed in aparallel algorithm. Although it
takes several steps to perform such operations, the execution time may be reduced. Let T(1,n) be the time taken by asingle
processing node system to simulate the computations performed by a parallel system. Interprocessor communication and
synchronization do not appear in the computations of the system with single processing node. Thus, the computations
performed in T(1,n) time units are pure computations. An alternate definition of efficiency which usesT(1,n) andT(A, p,n) is
defined as follows:

140

T(Ln)

E:'—
p” T(A p,n)

@)

The isoefficiency function derived by using Equation (2) shows how well the pure computations of an algorithm can be
paraleled. The aternate definition of efficiency usesT(1,n) asabase. Thus, we denote the isoefficiency function derived by
this definition as the absolute isoefficiency function. The advantage of taking the absolute isoefficiency function as a
scalability measureisasfollows: for aparallel agorithm which can solve aprobleminasmall period of time by using larger
amount of operations (than those performed by an optimal sequential algorithm), the isoefficiency function still exists. In
contrast to the absolute isoefficiency function, the definition in Equation (1) is called relative isoefficiency function. In the
following analysis, we use absol ute i soefficiency function instead of relativeisoefficiency function to measure the scal ability
of asystem.

In [2], the authors also defined the Memory Overhead Factor (MOF) for an algorithm-architecture pair. The memory
overhead factor is the ratio of the total memory required by all the processing nodes to the amount of memory required for
the same problem size on a single processor. Note that the problem size is measured based on the amount of computations
needed to be performed by the system to derive theresult.

[11. Isoefficiency with Memory Constraint

In the design of aparallel algorithm, mapping data and program partitionsto processing nodes of aparallel systemisan
important issue. Employing an appropriate mapping strategy can enhance the performance of the parallel system. Two types
of computations, global computation and local computation, have been mentioned in [16]. Global computation uses
distributed local memories as a large shared memory in which the data is distributed and shared. The computations are
referred to aslocal computations, when the memory within a processing node is only used by the node during computations.
For some applications, the communication time and the synchronization time can be reduced by distributing several copies of
the same program or data to each of the processing nodes and concurrently perform the computations. That is, we may be
able to reduce the communication and synchronization overhead of a distributed memory system by usinglocal computation
instead of global computation. The isoefficiency function of such a system may improve. However, the number of copies
may increase in proportion to the number of processing nodes. It may occur that the memory of the system can be used up
quickly due to multiple copies of data or programs. This implies that we need to consider the memory size constraint of a
parallel computer, when the isoefficiency function of the system is computed. The following equation is used to illustrate the
fact given by the above observations.

MEM arch(p) 3 MEMaIg(n) (3)

where,
) MEM 44(n) is theamount of memory needed by the algorithm alg to implement an application. It isafunction of
input sizen.
) MEM 4ch(p) is theamount of available memory space provided by theparallel architecturearch. Itisafunction of
the number of processing nodes p of aparallel computer.

If we combine Equations (2) and (3) then we see that the number of processing nodes of a system should be bounded. If the
number of processing nodes exceeds this bound, then it isimpossible for the system to maintain constant efficiency. We call
this range theexpansion range of aparallel system.

In the followings, we use all-pairs-shortest-path problem as an example to illustrate that the amount of memory of a
parallel machine can affect the scalability of a system. In our example, all-pairs-shortest-path problem is solved by Parallel
Floyd Algorithm (checkerboard version) running on a hypercube parallel computer. Assume there are n cities to be
considered. Thus, the input to the computer is the relative distances of then cities. The information of the distances between
any pair of citiesis stored in amatrix of sizen?. In the algorithm, the matrix is partitioned top squares of size (n/pY?)" (n/p*?)
and each square is mapped to one of thep processing nodes. It is easy to derive the parallel running time of the algorithmis

141

ano &n? 0
T, =Q—+Q%—logp™
B TT A rat

The first term is the computation time and the second term is the communication time. By employing Equation (2), we can
derive that the absolute isoefficiency function is Q(p*°(log p)®). Interested readers should refer to [3] for details. Since the
information of relative distances between all pairs of thecitiesis stored in amatrix of sizen?, the amount of memory needed
by the algorithm isasfollow:

MEM 44(n) =Q (n?) 4

Assume each node of the hypercube computer has memory size of m units. Since the memory space increases in linear
proportion to the number of processing nodes of the parallel computer, the amount of memory space provided by the parallel
computer is as follow:

MEM ¢ (P) = Q(mp) ©)
According to Equations (3), (4) and (5), we have,
mp =W(n*) ©)
The work size W is defined as the amount of computation needed to derive the result of a problem. Thus, the W of the
shortest path problem isn®. Then, we have the following equation:
W=Q(p**(logp)?).
It implies thatn=Q(p(logp)?). By substitutingn? in (6), we have:

p=0(2'™

The equation suggests that linear speedup can be achieved by expanding the system from a single processing node to p
processing nodes of m memory units, where p = O(Z‘E) . If we use more thanp processing nodes, then efficiency cannot be
maintained constant (i.e. linear speedup is not possible) dueto insufficient memory space.

V. Observations and Discussions

Based on the above analysis, we consider the expansion range of theparallel systemslisted in [3]. The results are shown
in Table 1. From Table 1, we can observe some interesting results. Some systems with good isoefficiency function may have
smaller expansion range; however, some systems with poor isoefficiency function have larger expansion range. For example,

Floyd Checkerboard on Cube (System S;):

¥ isoefficiency function fg (p) = Q(p*°(logp)?).
¥ Expansion range is O(Z‘E)

Dijkstra Source_Parallel on Cube (System S,):

% isoefficiency function fg,(p) =Q((plogp)*®).
¥% Expansion rangeis an m* 9
é(l ogm)® 5

Theisoefficiency function of System S, is poorer than that of System S,. However, the expansion range of System S, is
larger than that of System S,. Speedup of a system is equal to efficiency © number of processing nodes. Assume Systems S,
and S, need to maintain efficiency at some desired level. Then, System S; has a larger expansion range and can achieve
higher speedup.

142

V. Conclusion and Future Direction

In this paper, we have shown that although the isoefficiency function of a system exists, it cannot maintain constant

efficiency for any number of processing nodes exceeding its expansion range. This paper al so shows that a system that needs
to maintain efficiency at some desired level but has poorer isoefficiency function may have larger expasion range that leads

to ahigher speedup. In the future, we will extend our scalability analysis to the hetrogeneous clusters in which the memory
may scaleup non-linearly.

Acknowledgment

This research wassupported by the National Science Council, Taiwan, ROC, under Grant NSC91-2213-E-197-003.

References

Anshul Gupta and Vipin Kumar (1992), “Analyzing Performance of Large Scale Parallel Systems; Technical Report
92-32. Department of Computer Science, University of Minnesota.

Vipin Kumar and Anshul Gupta (1991), “Analyzing Scalability of Parallel Algorithms and Architectures Technical
Report. June, Dept. of Computer Science, University of Minnesota.

Vipin Kumar and Vineet Singh (1991), “ Scalability of Parallel Algorithms for the All-Pairs Shortest-Path Problem,”
Journal of Parallel and Distrubuted Computation 13, pp. 124-138.

Howard J. Siegel et al. (1992), “ Report of the Purdue Workshop on Grand Challenges in Computer Architecture for the
Support of High Performance Computing,” Journal of Parallel and Distributed Computing.

|EEE Symposium Record —Hot Chips |V (1992) August.

J. L. Hennessy and D. A. Patterson (1990), Conputer Architecture—A Quantitative A pproach, Morgan Kaufmann.

7. Jack J. Dongarra and David W. Walker (2001), “The Quest for Petascale Computing,” |EEE Computing in Science and

10.

11
12.

13.

14.

15.

16.

Engineering, vol. 3, no. 3, pp. 32-39.

R. Hughes (2001), “ Quantum Computation,” |EEE Computing in Science and Engineering, vol. 3, no. 2, pp. 26.

Albert Y. Zomaya, James A. Anderson, David B. Fogel, Gerard J. MilBurn, and Grzegorz Rozenberg (2001),
“Nonconventional computing paradigms in the new millennium: a roundtable” IEEE Computing in Science and

Engineering, vol3, no. 6, pp. 82-99.

David A. Patterson and John L. Hennessy (1994), Computer Organization & Design: The Hardware/ Software Interface,

Morgan Kaufmann Publishers.

Sriram Vajapeyam and Mateo Valero (April 2001), “ Early 21% Century Processors,” | EEE Computer , pp. 47-50.

J. J. Dongarra (2002), “Performance of Various Computers Using Standard Linear Equations Software, (Linpack

Benchmark Report),” University of Tennessee, Computer Science Technical Report.

Ka Hwang and Zhiwei Xu (1997), Scaable Paralel Computing: Technology/Architecture/Programming,
McGRAW-HILL International Editions.

Barry Wilkinson and Michael Allen (1999), Parallel Programming: Technology and Applications Using Networked

Workstations and Parallel Computers, Prentice Hall.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001), Introduction to Algorithms, o
Edition, The MIT Press.

X. -H Sun and Lionel M. Ni (1990), “Another View on Parallel Speedup,” In Proceedings of Supercomputing '90, pp.
324-333.

91 09 09
91 09 30

143

the amount of work needed to maintair
efficiency constant

120

100

80

60

40

20

—&@— System C
—&— System B

—&— System A

4 5

the number of processing nodes

6

7 8

Fig 1 The isoefficiency functions of Parallel Systems A, B, and C.

Table 1 Comparison of the expansion of various algorithm-architecture pair.

Base Parallel Variant Architecture Isoefficiency MOF Expansion Range
Dijkstra| Source-Partition Hypercube, p° p o(m®)
Dijkstra| Source-Parallel Hypercube (plogp)*® n o(m? /(logm)°)

Mesh p1.8 n o(m1.25)

Floyed Stripe Hypercube (plogp)® 1 O(m/(logm) %)

MeSh (SF) p4'5 1 o(mO.S)
Mesh (CT) (plogp)® 1 Oo(m/(logm))
Floyed Checkboard Hypercube p*® (logp)® 1 0(2";)
Mesh (SF) p° 1 O(m)
MeSh (CT) p2'25 l O(m2)
Floyed Pipeline Hypercube, p'® 1 ¥

144

145

