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Abstract

In this paper a switched predictive vector quantizer is employed to efficiently encode the line
spectrum frequencies (LSF) extracted from speech signals. To exploit the interframe and intraframe
correlation of LSF parameters, we utilize a switched predictive network (SPN) to predict the
upcoming LSF parameters. The prediction residual is then coded using 3-stage vector quantization
(3SVQ). Separate sets of codebooks are particularly trained to cope with individual predictive
networks. Improvement over the non-predictive case is demonstrated using spectral distortion
measures based on a database of 60312 LSF vectors. During training and encoding, a regulation rule
has also been developed to ensure the ordering property. This rule allows a full usage of codebook
space and consequently leads to the reduction of spectral distortion by 0.028 dB. If computation is of
great concern, the complexity can be reduced by half at the cost of slight degradation. Experiments
show that the combination of a half-searching 8-SPN 3SVQ with a 4-best searching scheme requires
only 18 bits to achieve transparent quantization with 20 ms frame separation.

Key words : line spectrum frequency, vector quantization, switched predictive network, predictor-quantizer system
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1. Introduction
Efficient quantization of spectral parameters is

essential for linear prediction (LP) based speech coders
operating at low bit rates. Among recently developed
coding systems, the most prevailing approach to encoding
the spectral information is the vector quantization (VQ) of
LSF parameters. The popularity of LSF parameters
results from its superiority in stability check, excellent
interpolation properties, and relative
quantization errors [1,2]. Methods for quantizing LSF

parameters such as split and multi-stage VQ have been

insensitivity to

reported to achieve satisfactory performance at 22-24 bits
per 20 ms frame [3,4]. By exploiting the correlation of
the LSF parameters across adjacent frames, more efficient
quantization is achievable by using prediction [5-11].
This implies that the LSF parameters in the current frame
are predictable by using the LSF parameters in previous
The VQ is then applied to the prediction residual
Simulation results show that,
with the participation of prediction, fewer bits are sufficient

frames.
with a lower dynamic range.
to achieve comparable performance. In light of such a
concept, we proposed a switched predictive network (SPN)
in combination with 3-stage vector quantization (3SVQ) to
achieve low-bit rate coding of LSF parameters. Since the
codebook content in 3SVQ also affects the final result of
quantization, our investigation includes how to organize
these predictive networks and multistage codebooks, and
how to determine the best predictor-quantizer combination.
In the following we present in details the design procedure
for the predictor-quantizer system as well as the
performance evaluation with respect to different bit
allocations. Some related factors such as computational

complexity and storage requirement are taken into

consideration as well.

2. Network structure

The proposed network has only one layer of neurons
with inputs connected through matrix W and biased by
vector b.  The output of each neuron corresponds to a LSF
These
neurons are trained to predict the LSF parameters of the

and the employed transfer function is purely linear.

current frame by using the LSF parameters gathered from
previous frames. Our first encountered problem is to
determine the number of past frames that should take part
in the prediction. We begin with a test based on a data set
consisting of 60312 speech frames extracted from

Mandarin sentences uttered by 10 speakers (5 males and 5

b
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females). The sampling rate is 8 KHz and the size of
analysis frames is 20 ms. For each frame the LSF
parameters are obtained by converting 10th-order linear
prediction (LP) coefficients.
terms of mean square error (MSE) between the actual and
predicted LSF parameters in the training set.

Fig. 1 presents the results in

Results of
linear predictors derived from individual LSF contours with
different orders are also provided for comparison. It is
shown that the proposed network consistently outperforms
the linear predictor for the orders under investigation. For
both cases, the improvement becomes sluggish as the order
exceeds two. Hence in the following discussion the
predictive network only take the information of two
previous frames as input.

To quantize the input LSF parameters, a SPN is
adopted as the front-end processor of 3-stage VQ. Such a
SPN aims at reducing the dynamic range of input
parameters for efficient quantization. The procedure for
generating the required number of predictive networks is
similar to that for conventional VQ.

convenience, we regard the sequence of 10th-order LSF

For explanatory

parameters as a vector. Initially all LSF vectors are
grouped into one cluster. A primitive network is trained
by using the quasi-Newton backpropagation method with
all LSF vectors involved. The LSF vectors are split into
two clusters of equal size, i.e., vectors with smaller
prediction errors are gathered as the first subgroup while
those with larger errors are categorized into the second
We then derive two predictive networks
according to two subgroups of LSF vectors.

subgroup.
Subsequent
to the generation of two new networks, an iterative
approach is brought in to adapt the networks to minimize
the sum-squared prediction error. Within each iteration,
we examine the predictability of these two networks for
The LSF vector is reassigned

to an alternative subgroup if the underlying predictive

LSF vectors in the cluster.

network attains a larger prediction error.
retrain the two networks according to the rearranged
subgroups of LSF vectors.

Finally, we

Such an iterative process
continues until a convergence criterion is satisfied or a
certain number of iterations are completed. At the end of
iteration we tag the values of sum-squared-error (SSE) with
the predictive networks and treat each subgroup of LSF
In case the expected number of
predictive networks is not reached, the next cluster for

vectors as a new cluster.

splitting is chosen as the one with a maximum SSE among
In Table 1, we present experimental
results of the 1-, 2-, 4- and 8- SPN using all training

existing clusters.
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samples.  The obtained results surely illustrate the
efficiency of the switched network in predicting the LSF

parameters.

3. Vector quantization of LSF
parameters

As the switched network offers an initial estimate of
the LSF vector, the object for quantization thus becomes
the prediction residual that is obtained by subtracting the
predicted LSF vector from its actual value. We employ an
M-best 3-stage VQ scheme [2] to encode the LSF residual.
The codebooks are trained using the well-known
generalized Lloyd algorithm. During codebook training,
the distance measure D between the original and quantized

LSF vectors is defined as
10 \?
D=>w,-1)
i=1

where |, represents the ith original LSF parameter and E

)

denotes its quantized version. w;, is the weight derived
from a Mel-frequency warping-based function given by
[12].
1 1 2 045sinl, Y
W= ——+—— | 1+—tan" ————— |,
L=l L., -1 | 1-0.45cosl,

)
This weighting function emulates the human auditory
system that emphasizes spectral peaks more than spectral
valleys on a Mel-frequency scale. For each residual
vector to be encoded, the 3-stage codebooks are searched
At the first stage, M
codevectors that achieve the lowest weighted distortion are

selected and the error vectors are obtained by subtracting

using a tree search procedure.

the residual vector from the codevector. The second-stage
codebook is then searched using the M error vectors; each
leading to M possible paths with lowest weighted distance.
Again, M out of M? paths that achieve the overall lowest
distance measures are selected.  This procedure is
continued for all stages of codebooks. Once M paths are
resolved for all stages, the best out of M paths is
determined by minimizing the spectral distortion (SD)
between the given and quantized vectors. Eventually, the
attributes used to characterize the quantized LSF vectors
include the index of the chosen predictive network along
with the indices of the selected codevectors from all stages.
The quantized LSF vector is reconstructed by summing up
the chosen network output and the codevectors from the

3-stage codebooks, i.e.,
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where I represents the quantized LSF vector at the tth

frame. W and b denote the weighting matrix and bias

vector, respectively. The codevector at the kth stage is
denoted as c,; , where the subscript i, indicates the
codebook entry. Fig. 2 illustrates the performance gain
due to the M-best search scheme for various bit allocations
while M=1,2, and 4 respectively. The SD measure in our
computer simulation is defined as

d(S(f),5,())

1/2

14 ;
- Ej[lOlogwS(f)—lologwsq(f)]df

where S(f) and S (f) are the original and qua(:t)ized
power LP-spectra, respectively. « and g correspond
to 125 Hz and 3.7 KHz, respectively. The allocation of
We begin with 6 bits

Each additional bit is added to the stages in a

bits in Fig. 2 is arranged as follows.
per stage.
sequential manner such that the number of bits in the
subsequent stage is not larger than that of the preceding
stage. We increment the number of bits by one each time
until 24 bits are reached. The increase of M improves
but  inevitably  raises
computational burden to a great extent. Although M=8 is
suggested by many
we choose M=4 as a tradeoff between

quantization  performance

experimentally  sufficient and
researchers,
quantization performance and computational load.

we also

During the codebook implementation,

examine the effect of different error criteria on quantization

performance. Given that the mean-squared-error (MSE)
criterion is used, the resultant ith codevector at the mth
codebook, termed ¢ ,;, is derived as

1

Cm,i :_zem,k ! (5)

Ni k=1
where e, denote the error vector, and N, is the
number of error vectors in the ith cluster. When a

weighted mean-squared-error (WMSE) criterion is adopted,
the codevector ¢ ; becomes

o Sewe)/[Zw] o

where W, is a diagonal matrix with w,’s on the main

diagonal. We demonstrate the efficacy of the two criteria
in Table 2 by showing the WMSE’s and SD’s derived from
the 3SVQ using a 4-best searching scheme.
by the simulation results, it is to our surprise that the

As revealed
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employment of the WMSE criterion in codebook
generation does not always yield better quantization
However, we find no fault with the WMSE
criterion since it outperforms the MSE criterion in terms of
the average WMSE especially obtained at the first stage.

We believe that such results are due to the following two

performance.

reasons. First, it appears that certain mismatch exists
between the average WMSE and SD. Second, the M-best
searching scheme may end up with an inferior codevector
at the preceding stage as long as the final reconstructed
vector is optimal. Since the use of the WMSE criterion
can only increase computational burden without showing
any advantage in SD, Eq. (5) is employed to derive the
codevector throughout the rest of this paper.

Notice that in the above simulation we use the original
LSF vector instead of the quantized one to carry out
network prediction. Nevertheless, this impractical
condition will be amended later when we re-optimize the
A disadvantage of the 3SVQ is
that the reconstructed LSP parameters are not guaranteed to

multi-stage codebooks.

satisfy the ordering property. As a result, the codevectors
that violate the ordering property are discarded during the
It has been reported that efficient
improve quantization

codevector search.
usage of codebook space can
performance [13]. Thus, we proposed a rectification rule
to ensure the ordering property by letting

I, = max{lH +0.003, I, } , @)
where f, represents an intermediary value obtained prior
to the addition of the underlying codevector. The

proposed
codebook space and reduce SD by approximately 0.028 dB
for the 4-best searching scheme shown in Fig. 2.

rectification allows us to exploit the full

4. Switched predictive network

As mentioned earlier, the switched network is
intended to improve the predictive accuracy. Though an
accurate prediction of the LSF vector is beneficial to
subsequent VQ, the network that yields the minimum
prediction error will not necessarily lead to the best
In other words, the deficiency of

network prediction may be partially compensated by

quantization result.
manipulating the codebook content. Hence it seems
plausible to cope each predictive network with distinct
codebooks in order to attain the optimal performance. In
this study, the 3-stage codebooks associated with a specific
network are obtained by quantizing the LSF residual
vectors that belong to the same cluster during network
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training. The motivation behind such an arrangement is to
minimize the average quantization error for the residual
vectors in each cluster. However, quantization in this
manner can only results in a local minimum because it does
not take into account the interaction between the predictive
network and 3-stage codebooks. This problem is resolved
by a procedure called codebook re-optimization, which is
presented in the next section. Here we put emphasis on

the quantization performance achieved by the SPN-3SVQ

system.  To encode a given LSF vector, all the
network/codebook pairs are examined and the one that
provides the smallest distortion is selected. Fig. 3

presents the resulting average distortion measures given
that the bit allocation ranges from 18 to 22 per frame while
the number of reserved bits for network switching extends
from 1 to 3. Performance measures of the 8-SPN 3SVQ
are particularly listed in Table 3 for reference. It appears
that the 8-SPN in conjunction with 3-stage {5,5,5} VQ
yields an averaged spectral distortion below 1 dB, which is
a level close to transparent quantization.
have been made to achieve transparent quantization of

Thus our efforts

spectral characteristics with 18 bits per 20 ms frame.
Despite that the use of separate codebooks improves
the quantization
computation efforts as well as memory storage. Let us
now adopt the 3-stage, {p,q,r} , VQ with a M-best
The
sizes for codebooks at three stages are 2°,2%, and 2",
respectively. Suppose that the amount of computation
required for assessing the suitability of a codevector is 4.

performance, it demands more

searching scheme as the baseline for comparison.

If we disregard the need for drawing M-best paths out of
possible candidates at each stage, the overall computation
for determining the optimal codevector sequence can be
approximated by [2° + M (2% +2")]1. A similar analytic

strategy can be applied to the SPN-3SVQ. We now
reserve some bits, e.g. {ab,c} which are originally
allocated for codebooks at three stages, to indicate the
index of predictive networks. The computation

necessitated by the SPN-MSVQ sums up
@ )[2P 2+ M9 +2" 94 in  addition to

to
the

evaluation  of  predictive  networks. Since
(¥ NPT LM% 4279 2[2°P + M(2°+20)]2 , we
may readily conclude that the employment of the SPN
surely raises the computational complexity.

The analysis of storage requirement due to the
involvement of the SPN follows the same principle.

Given that each codevector occupies a memory space of
o, the total allocation for codebooks in 3-stage {p,q,r}
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VQ amounts to (2° +29+2")o . On the other hand, as
we connect each predictive network with separate
codebooks, there are in total 2****¢ 3-stage codebooks,
each of which calling memory  space
of (2P 42427 %0 Again, since
28+bre(pP-a 4 207b | 2105 > (2P +2°+2")o, the proposed

for a

quantization scheme thus consumes more memory than that
needed by multistage VQ without prediction.

In this study, we have verified the advantage of using
separate sets of multi-stage codebooks rather than sharing a
single set of codebooks.
serious concern in practical implementation, a better way to

If memory space becomes a

reduce memory would be the use of algebraic VQ [14] or
split-matrix [15] methods. This paper does not intend to
get involved with the other possible substitutes. Our
attempt instead focuses on lowering computational efforts
without causing too much degradation.
(3), the quantized LSF vector comprises two parts: one is

As shown in Eq.

the network output and the other is the summation of the
chosen codevectors from all stages. To encode a LSP
vector, we need to examine all network/codebook pairs
It is observed in our
experiments that the optimal result often emerges from the

before making any selection.

codebooks with the most accurate predictive network. Fig.

4 demonstrates such a phenomena by showing the
accumulated probability for the optimal
sequence drawn from the network/codebook pairs that are

codevector

sorted according to the WMSE’s of network prediction.
Taking the 18-bit 8-PSN MSVQ as an example, the search
for the first half of the network/codebook pairs with lesser
errors has nearly 96% of chance to acquire the optimal
codevectors before completing a full search of all pairs.
More importantly, the corresponding average SD is only
slightly degraded.
matter of concern, it seems worthwhile to reduce the
computation by half at the cost of slightly increased SD.

If the computational efficiency is a

In accordance with the principle used for complexity
evaluation, the computational requirement for a half
searching of this 8-SPN 3SVQ is roughly equal to that
required for a 3-stage {7,7,7} VQ without prediction. For
real-time implementation the demand on computation can

be easily afforded by nowadays processors.

5. Codebook reoptimization

Following the initial establishment of multistage
codebooks, the next step to improve the quantization

performance is codebook reoptimization. Notice that the
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search for the optimal codevector at the present stage does
not make reference to codebook contents at subsequent
stages. One may therefore consider all codevectors at the
following stage as null. However, since the multi-stage
the

codebook at each stage can be optimized subject to the

codebooks become available after initial setup,

others.  More specifically, the object for codebook
training at each stage can be replaced by the error vector
between the residual vector and the reconstructed vector
that consists of codevectors from all stages except the one
being reutilized.

The reoptimization process is carried out in an
iterative manner.

quantization in respect of every LSF vector to render an
optimal index sequence termed (p, j,(n), j,(n), i5(n) ,

where p denotes the network selection, n is a counter,
and j,(n) corresponds to the codevector sequence. For

Within each iteration, we perform

the codebooks connected with the pth predictive network,

the i,th codevector at stage m, denoted as c,, ', is
updated by
w_L13), o bl po | ®
Gy, " = 2= W 2 b =D e 0
N n=1 It,z k=1

k#m

©)
where N represents the number of occurrences when
i, =j,(n) and the switch index is p. Eq. (8) is
analogous to moving the codevector to the centroid of error
The above-mentioned reoptimization iterates
between codevector searching and codebook readjustment.

vectors.

By using the
quantization error exhibits a declining tendency in a
mean-squared sense, and the corresponding SD is usually

reoptimized codebooks, the average

decreased as well.
during the codebook reoptimization we adopt the quantized
LSP vectors of past frames to predict the current LSP

It is particularly emphasized that

vector. This is the actual situation encountered at the
receiving end of a speech coder. As the predictive
networks are derived from the original LSF vectors, the
substitution of quantized vectors in network prediction
generally leads to unexpected perturbation.
during the iterative process we decide to keep the

However,

predictive networks intact despite that the adaptation of the
predictive networks may possibly reduce the perturbation.
Reasons for such a decision are: 1) the perturbation can be
partially compensated by proper adjustment of multistage

codebooks. 2) As the quantized vectors progressively
move toward the original vectors via codebook
reoptimization, the resulting network coefficients
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eventually come close to that obtained using the original
LSP vectors.

Fig. 5 shows the average SD measures derived from
the reoptimized codebooks of the 18-bit SPN-3SVQ for
first 20 iterations with the performance measures tabulated
underneath for every 5 iterations. It can be seen that the
SD is maintained below 1 dB as the number of iterations
goes bheyond 6.
SD in the range of 2-4 dB are observed, and outliers with
SD greater than 4 dB are almost not found.

Apart from the data for training, an independent
database consisting of 60145 LSF vectors is used for
evaluating the out-of-training case. Table 4 lists the
performance of the proposed 8-SPN 3SVQ at 18 bits/frame.
The employed 3-stage codebooks are that derived from the
reoptimization process with 20 iterations. The tabulated
data degradation for the
out-of-training test. We believe that such a result is due to

Moreover, fewer than 2% outliers with

indicate an insignificant
similar distribution of prediction error vectors in both
inside- and outside-training cases.

6. Concluding remarks

This paper presents a switched predictive network to
decorrelate the LSF parameters in both temporal and
spectral domains. The parameters to be quantized are the
prediction residuals. As the variance of the prediction
residuals is far less than that of the original LSF parameters,
the switched prediction strategy makes certain the success
of low bit-rate speech coding. We employ a 3-stage
The
combination of an 8-switched predictive network with

vector quantizer to encode the prediction residual.

3-stage VQ results in transparent quantization at a rate of
18 bits per 20 ms frame. This implementation adopts a
regulation rule to properly order the LSF parameters and
reduce the required computation by half through selective
searching of network/codebook pairs. Furthermore, the
simulation with respect to the out-of-training group
demonstrates the efficiency and robustness of the proposed

quantizer.
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Table 1: Performance improvement due to switched predictive network in terms of MSE'’s.
1-SPN 2-SPN 4-SPN 8-SPN
MSE ( ><10_3) 0.6726 0.5193 0.4113 0.3443

Table 2: Quantization performance due to different criteria in codebook training.

MSE criterion WMSE criterion
Distortion Distortion Distortion Distortion
measured at 1% stage  |measured at 3" stage |measured at 1! stage  |measured at 3™ stage
Bit allocation SD WMSE SD WMSE SD WMSE SD WMSE
18 (6,6,6) 2.1216 0.4064 1.1063 0.1286 2.1293 0.4026 1.1033 0.1279
21 (7,7,7) 1.9963 0.3540 0.9226 0.0879 1.9996 0.3503 0.9235 0.0883
24 (8,8,8) 1.8773 0.3054 0.7693 0.0599 1.8770 0.3030 0.7706 0.0606

Table 3: Performance of the 8-SPN 3SVQ at rates of 18-22 bits/frame.

Bits/frame SD (dB) 2-4 dB (%) >4 dB (%)
18 (3,5,5.,5) 0.9689 2.1919 0
19 (3,6,5.5) 0.9133 1.3016 0
20 (3,6,6,5) 0.8562 0.5952 0
21 (3,6.,6.6) 0.8111 0.2238 0

Table 4: Performance evaluation of the 18-bit 8-SPN 3SVQ for out-of-training data.

Bits/frame | Search range SD (dB) 2-4 dB (%) >4 dB (%)
18 (3,5,5,5) Half 0.9958 2.2762 0.0033
18 (3,5,5,5) Full 0.9837 2.0018 0.0033
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Fig. 1 MSE’s between the actual and predicted LSF parameters.
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Fig. 2 Average spectral distortion between the original and quantized LSF parameters obtained from
a single predictive network with 3-stage VQ using M-best searching.
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Fig. 3  Average SD performance for various SPN-3SVQ at rates of 18-22 hits/frame.
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Fig. 4 lllustration of incomplete codebook search in the 18-bit 8-SPN 3SVQ. The bar chart reflects
the accumulated percentage of the optimal codevector sequence acquired from a number of
network/codebook pairs with better prediction; the overlaying plot indicates the average SD of
the reconstructed LSF vectors.
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Fig.5 Average SD versus iterations of codebook reoptimization with 8-SPN 3SVQ at 18 bits/frame.
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