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Abstract 

In this paper a switched predictive vector quantizer is employed to efficiently encode the line 
spectrum frequencies (LSF) extracted from speech signals.  To exploit the interframe and intraframe 
correlation of LSF parameters, we utilize a switched predictive network (SPN) to predict the 
upcoming LSF parameters.  The prediction residual is then coded using 3-stage vector quantization 
(3SVQ).  Separate sets of codebooks are particularly trained to cope with individual predictive 
networks.  Improvement over the non-predictive case is demonstrated using spectral distortion 
measures based on a database of 60312 LSF vectors.  During training and encoding, a regulation rule 
has also been developed to ensure the ordering property.  This rule allows a full usage of codebook 
space and consequently leads to the reduction of spectral distortion by 0.028 dB.  If computation is of 
great concern, the complexity can be reduced by half at the cost of slight degradation.  Experiments 
show that the combination of a half-searching 8-SPN 3SVQ with a 4-best searching scheme requires 
only 18 bits to achieve transparent quantization with 20 ms frame separation.  

Key words：line spectrum frequency, vector quantization, switched predictive network, predictor-quantizer system 
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結合轉轍式預測網路與多級向量量化 
以達成線頻譜對參數之高效率編碼 
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2. 國立宜蘭大學電子工程學系副教授 

摘  要 

本文針對語音信號之線頻譜對參數，提出一套預測量化機制俾使編碼效能提昇，我們藉由轉轍式預測

網路來利用鄰近音框的關係，使現下之線頻譜對參數能從過往音框的相關參數估算，而預測之殘餘再採

三級向量量化加以編碼，至於性能改善則是以總計 60312 筆之線頻譜對向量的頻譜失真量測來表現。在

訓練和編碼期間，所發展的調整規則可保證參數維持其序列性，而這種規則更可活用全部代碼，進一步

使頻譜失真下降 0.028 分貝。假若計算需求值得高度關切，或可將代碼簿搜尋的範圍減半，惟這樣的作

法也伴隨著效能稍降的代價。實驗顯示，一旦將八轉轍預測網路、三級向量量化與前四個最佳的搜尋策

略予以結合，僅需 18 個位元即可達成 20ms 音框間隔之透明編碼。 

關鍵詞：線頻譜頻率，向量量化，轉轍式預測網路，預測量化器之系統 
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1. Introduction  

Efficient quantization of spectral parameters is 
essential for linear prediction (LP) based speech coders 
operating at low bit rates.  Among recently developed 
coding systems, the most prevailing approach to encoding 
the spectral information is the vector quantization (VQ) of 
LSF parameters.  The popularity of LSF parameters 
results from its superiority in stability check, excellent 
interpolation properties, and relative insensitivity to 
quantization errors [1,2].  Methods for quantizing LSF 
parameters such as split and multi-stage VQ have been 
reported to achieve satisfactory performance at 22-24 bits 
per 20 ms frame [3,4].  By exploiting the correlation of 
the LSF parameters across adjacent frames, more efficient 
quantization is achievable by using prediction [5-11].  
This implies that the LSF parameters in the current frame 
are predictable by using the LSF parameters in previous 
frames.  The VQ is then applied to the prediction residual 
with a lower dynamic range.  Simulation results show that, 
with the participation of prediction, fewer bits are sufficient 
to achieve comparable performance.  In light of such a 
concept, we proposed a switched predictive network (SPN) 
in combination with 3-stage vector quantization (3SVQ) to 
achieve low-bit rate coding of LSF parameters.  Since the 
codebook content in 3SVQ also affects the final result of 
quantization, our investigation includes how to organize 
these predictive networks and multistage codebooks, and 
how to determine the best predictor-quantizer combination.  
In the following we present in details the design procedure 
for the predictor-quantizer system as well as the 
performance evaluation with respect to different bit 
allocations.  Some related factors such as computational 
complexity and storage requirement are taken into 
consideration as well.   

 

2. Network structure   

The proposed network has only one layer of neurons 
with inputs connected through matrix W and biased by 
vector b.  The output of each neuron corresponds to a LSF 
and the employed transfer function is purely linear.  These 
neurons are trained to predict the LSF parameters of the 
current frame by using the LSF parameters gathered from 
previous frames.  Our first encountered problem is to 
determine the number of past frames that should take part 
in the prediction.  We begin with a test based on a data set 
consisting of 60312 speech frames extracted from 
Mandarin sentences uttered by 10 speakers (5 males and 5 

females).  The sampling rate is 8 KHz and the size of 
analysis frames is 20 ms.  For each frame the LSF 
parameters are obtained by converting 10th-order linear 
prediction (LP) coefficients.  Fig. 1 presents the results in 
terms of mean square error (MSE) between the actual and 
predicted LSF parameters in the training set.  Results of 
linear predictors derived from individual LSF contours with 
different orders are also provided for comparison.  It is 
shown that the proposed network consistently outperforms 
the linear predictor for the orders under investigation.  For 
both cases, the improvement becomes sluggish as the order 
exceeds two.  Hence in the following discussion the 
predictive network only take the information of two 
previous frames as input.   

To quantize the input LSF parameters, a SPN is 
adopted as the front-end processor of 3-stage VQ.  Such a 
SPN aims at reducing the dynamic range of input 
parameters for efficient quantization.  The procedure for 
generating the required number of predictive networks is 
similar to that for conventional VQ.  For explanatory 
convenience, we regard the sequence of 10th-order LSF 
parameters as a vector.  Initially all LSF vectors are 
grouped into one cluster.  A primitive network is trained 
by using the quasi-Newton backpropagation method with 
all LSF vectors involved.  The LSF vectors are split into 
two clusters of equal size, i.e., vectors with smaller 
prediction errors are gathered as the first subgroup while 
those with larger errors are categorized into the second 
subgroup.  We then derive two predictive networks 
according to two subgroups of LSF vectors.  Subsequent 
to the generation of two new networks, an iterative 
approach is brought in to adapt the networks to minimize 
the sum-squared prediction error.  Within each iteration, 
we examine the predictability of these two networks for 
LSF vectors in the cluster.  The LSF vector is reassigned 
to an alternative subgroup if the underlying predictive 
network attains a larger prediction error.  Finally, we 
retrain the two networks according to the rearranged 
subgroups of LSF vectors.  Such an iterative process 
continues until a convergence criterion is satisfied or a 
certain number of iterations are completed.  At the end of 
iteration we tag the values of sum-squared-error (SSE) with 
the predictive networks and treat each subgroup of LSF 
vectors as a new cluster.  In case the expected number of 
predictive networks is not reached, the next cluster for 
splitting is chosen as the one with a maximum SSE among 
existing clusters.  In Table 1, we present experimental 
results of the 1-, 2-, 4- and 8- SPN using all training 
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samples.  The obtained results surely illustrate the 
efficiency of the switched network in predicting the LSF 
parameters.   

 

3. Vector quantization of LSF 
parameters 

As the switched network offers an initial estimate of 
the LSF vector, the object for quantization thus becomes 
the prediction residual that is obtained by subtracting the 
predicted LSF vector from its actual value.  We employ an 
M-best 3-stage VQ scheme [2] to encode the LSF residual.  
The codebooks are trained using the well-known 
generalized Lloyd algorithm.  During codebook training, 
the distance measure D between the original and quantized 
LSF vectors is defined as 
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This weighting function emulates the human auditory 

system that emphasizes spectral peaks more than spectral 
valleys on a Mel-frequency scale.  For each residual 
vector to be encoded, the 3-stage codebooks are searched 
using a tree search procedure.  At the first stage, M 
codevectors that achieve the lowest weighted distortion are 
selected and the error vectors are obtained by subtracting 
the residual vector from the codevector.  The second-stage 
codebook is then searched using the M error vectors; each 
leading to M possible paths with lowest weighted distance.  
Again, M out of 2M  paths that achieve the overall lowest 
distance measures are selected.  This procedure is 
continued for all stages of codebooks.  Once M paths are 
resolved for all stages, the best out of M paths is 
determined by minimizing the spectral distortion (SD) 
between the given and quantized vectors.  Eventually, the 
attributes used to characterize the quantized LSF vectors 
include the index of the chosen predictive network along 
with the indices of the selected codevectors from all stages.  
The quantized LSF vector is reconstructed by summing up 
the chosen network output and the codevectors from the 
3-stage codebooks, i.e.,   
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where tl
~  represents the quantized LSF vector at the tth 

frame.  W  and b  denote the weighting matrix and bias 

vector, respectively.  The codevector at the kth stage is 
denoted as 

kik ,c , where the subscript ki  indicates the 

codebook entry.  Fig. 2 illustrates the performance gain 
due to the M-best search scheme for various bit allocations 
while M=1,2, and 4 respectively.  The SD measure in our 
computer simulation is defined as  
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        (4) 
where )( fS  and )( fSq  are the original and quantized 

power LP-spectra, respectively.  α  and β  correspond 

to 125 Hz and 3.7 KHz, respectively.  The allocation of 
bits in Fig. 2 is arranged as follows.  We begin with 6 bits 
per stage.  Each additional bit is added to the stages in a 
sequential manner such that the number of bits in the 
subsequent stage is not larger than that of the preceding 
stage.  We increment the number of bits by one each time 
until 24 bits are reached.  The increase of M improves 
quantization performance but inevitably raises 
computational burden to a great extent.  Although M=8 is 
experimentally sufficient and suggested by many 
researchers, we choose M=4 as a tradeoff between 
quantization performance and computational load.   

During the codebook implementation, we also 
examine the effect of different error criteria on quantization 
performance.  Given that the mean-squared-error (MSE) 
criterion is used, the resultant ith codevector at the mth 
codebook, termed im,c , is derived as  
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where km,e  denote the error vector, and iN  is the 

number of error vectors in the ith cluster.  When a 
weighted mean-squared-error (WMSE) criterion is adopted, 
the codevector im,c  becomes  
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where kW  is a diagonal matrix with iw ’s on the main 

diagonal.  We demonstrate the efficacy of the two criteria 
in Table 2 by showing the WMSE’s and SD’s derived from 
the 3SVQ using a 4-best searching scheme.  As revealed 
by the simulation results, it is to our surprise that the 
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employment of the WMSE criterion in codebook 
generation does not always yield better quantization 
performance.  However, we find no fault with the WMSE 
criterion since it outperforms the MSE criterion in terms of 
the average WMSE especially obtained at the first stage.  
We believe that such results are due to the following two 
reasons.  First, it appears that certain mismatch exists 
between the average WMSE and SD.  Second, the M-best 
searching scheme may end up with an inferior codevector 
at the preceding stage as long as the final reconstructed 
vector is optimal.  Since the use of the WMSE criterion 
can only increase computational burden without showing 
any advantage in SD, Eq. (5) is employed to derive the 
codevector throughout the rest of this paper.    

Notice that in the above simulation we use the original 
LSF vector instead of the quantized one to carry out 
network prediction.  Nevertheless, this impractical 
condition will be amended later when we re-optimize the 
multi-stage codebooks.  A disadvantage of the 3SVQ is 
that the reconstructed LSP parameters are not guaranteed to 
satisfy the ordering property.  As a result, the codevectors 
that violate the ordering property are discarded during the 
codevector search.  It has been reported that efficient 
usage of codebook space can improve quantization 
performance [13].  Thus, we proposed a rectification rule 
to ensure the ordering property by letting 

{ }iii lll ˆ,003.0
~

max
~

1 += − ,    (7) 

where il̂  represents an intermediary value obtained prior 

to the addition of the underlying codevector.  The 
proposed rectification allows us to exploit the full 
codebook space and reduce SD by approximately 0.028 dB 
for the 4-best searching scheme shown in Fig. 2.    
 

4. Switched predictive network 

As mentioned earlier, the switched network is 
intended to improve the predictive accuracy.  Though an 
accurate prediction of the LSF vector is beneficial to 
subsequent VQ, the network that yields the minimum 
prediction error will not necessarily lead to the best 
quantization result.  In other words, the deficiency of 
network prediction may be partially compensated by 
manipulating the codebook content.  Hence it seems 
plausible to cope each predictive network with distinct 
codebooks in order to attain the optimal performance.  In 
this study, the 3-stage codebooks associated with a specific 
network are obtained by quantizing the LSF residual 
vectors that belong to the same cluster during network 

training.  The motivation behind such an arrangement is to 
minimize the average quantization error for the residual 
vectors in each cluster.  However, quantization in this 
manner can only results in a local minimum because it does 
not take into account the interaction between the predictive 
network and 3-stage codebooks.  This problem is resolved 
by a procedure called codebook re-optimization, which is 
presented in the next section.  Here we put emphasis on 
the quantization performance achieved by the SPN-3SVQ 
system.  To encode a given LSF vector, all the 
network/codebook pairs are examined and the one that 
provides the smallest distortion is selected.  Fig. 3 
presents the resulting average distortion measures given 
that the bit allocation ranges from 18 to 22 per frame while 
the number of reserved bits for network switching extends 
from 1 to 3.  Performance measures of the 8-SPN 3SVQ 
are particularly listed in Table 3 for reference.  It appears 
that the 8-SPN in conjunction with 3-stage {5,5,5} VQ 
yields an averaged spectral distortion below 1 dB, which is 
a level close to transparent quantization.  Thus our efforts 
have been made to achieve transparent quantization of 
spectral characteristics with 18 bits per 20 ms frame.  

Despite that the use of separate codebooks improves 
the quantization performance, it demands more 
computation efforts as well as memory storage.  Let us 
now adopt the 3-stage, },,{ rqp , VQ with a M-best 

searching scheme as the baseline for comparison.  The 
sizes for codebooks at three stages are p2 , q2 , and r2 , 
respectively.  Suppose that the amount of computation 
required for assessing the suitability of a codevector is λ .  

If we disregard the need for drawing M-best paths out of 
possible candidates at each stage, the overall computation 
for determining the optimal codevector sequence can be 
approximated by λ)]22(2[ rqp M ++ .  A similar analytic 

strategy can be applied to the SPN-3SVQ.  We now 
reserve some bits, e.g. },,{ cba  which are originally 

allocated for codebooks at three stages, to indicate the 
index of predictive networks.  The computation 
necessitated by the SPN-MSVQ sums up to 

λ)]22(2)[2( crbqapcba M −−−++ ++  in addition to the 

evaluation of predictive networks.  Since 
λ)]22(2)[2( crbqapcba M −−−++ ++ λ)]22(2[ rqp M ++≥ , we 

may readily conclude that the employment of the SPN 
surely raises the computational complexity.   

The analysis of storage requirement due to the 
involvement of the SPN follows the same principle.  
Given that each codevector occupies a memory space of 
σ , the total allocation for codebooks in 3-stage },,{ rqp  
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VQ amounts to σ)222( rqp ++ .  On the other hand, as 

we connect each predictive network with separate 
codebooks, there are in total cba ++2  3-stage codebooks, 
each of which calling for a memory space 
of σ)222( crbqap −−− ++ .  Again, since 

σ)222(2 crbqapcba −−−++ ++ σ)222( rqp ++≥ , the proposed 

quantization scheme thus consumes more memory than that 
needed by multistage VQ without prediction.   

In this study, we have verified the advantage of using 
separate sets of multi-stage codebooks rather than sharing a 
single set of codebooks.  If memory space becomes a 
serious concern in practical implementation, a better way to 
reduce memory would be the use of algebraic VQ [14] or 
split-matrix [15] methods.  This paper does not intend to 
get involved with the other possible substitutes.  Our 
attempt instead focuses on lowering computational efforts 
without causing too much degradation.  As shown in Eq. 
(3), the quantized LSF vector comprises two parts: one is 
the network output and the other is the summation of the 
chosen codevectors from all stages.  To encode a LSP 
vector, we need to examine all network/codebook pairs 
before making any selection.  It is observed in our 
experiments that the optimal result often emerges from the 
codebooks with the most accurate predictive network.  Fig. 
4 demonstrates such a phenomena by showing the 
accumulated probability for the optimal codevector 
sequence drawn from the network/codebook pairs that are 
sorted according to the WMSE’s of network prediction.  
Taking the 18-bit 8-PSN MSVQ as an example, the search 
for the first half of the network/codebook pairs with lesser 
errors has nearly 96% of chance to acquire the optimal 
codevectors before completing a full search of all pairs.  
More importantly, the corresponding average SD is only 
slightly degraded.  If the computational efficiency is a 
matter of concern, it seems worthwhile to reduce the 
computation by half at the cost of slightly increased SD.  
In accordance with the principle used for complexity 
evaluation, the computational requirement for a half 
searching of this 8-SPN 3SVQ is roughly equal to that 
required for a 3-stage {7,7,7} VQ without prediction.  For 
real-time implementation the demand on computation can 
be easily afforded by nowadays processors.   

 

5. Codebook reoptimization 

Following the initial establishment of multistage 
codebooks, the next step to improve the quantization 
performance is codebook reoptimization.  Notice that the 

search for the optimal codevector at the present stage does 
not make reference to codebook contents at subsequent 
stages.  One may therefore consider all codevectors at the 
following stage as null.  However, since the multi-stage 
codebooks become available after initial setup, the 
codebook at each stage can be optimized subject to the 
others.  More specifically, the object for codebook 
training at each stage can be replaced by the error vector 
between the residual vector and the reconstructed vector 
that consists of codevectors from all stages except the one 
being reutilized.   

The reoptimization process is carried out in an 
iterative manner.  Within each iteration, we perform 
quantization in respect of every LSF vector to render an 
optimal index sequence termed ))(),(),(,( 321 njnjnjp , 

where p  denotes the network selection, n is a counter, 
and )(njk  corresponds to the codevector sequence.  For 

the codebooks connected with the pth predictive network, 
the mi th codevector at stage m , denoted as )(
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where N represents the number of occurrences when 

)(nji mm =  and the switch index is p .  Eq. (8) is 

analogous to moving the codevector to the centroid of error 
vectors.  The above-mentioned reoptimization iterates 
between codevector searching and codebook readjustment.  
By using the reoptimized codebooks, the average 
quantization error exhibits a declining tendency in a 
mean-squared sense, and the corresponding SD is usually 
decreased as well.  It is particularly emphasized that 
during the codebook reoptimization we adopt the quantized 
LSP vectors of past frames to predict the current LSP 
vector.  This is the actual situation encountered at the 
receiving end of a speech coder.  As the predictive 
networks are derived from the original LSF vectors, the 
substitution of quantized vectors in network prediction 
generally leads to unexpected perturbation.  However, 
during the iterative process we decide to keep the 
predictive networks intact despite that the adaptation of the 
predictive networks may possibly reduce the perturbation.  
Reasons for such a decision are: 1) the perturbation can be 
partially compensated by proper adjustment of multistage 
codebooks.  2) As the quantized vectors progressively 
move toward the original vectors via codebook 
reoptimization, the resulting network coefficients 
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eventually come close to that obtained using the original 
LSP vectors.   

Fig. 5 shows the average SD measures derived from 
the reoptimized codebooks of the 18-bit SPN-3SVQ for 
first 20 iterations with the performance measures tabulated 
underneath for every 5 iterations.  It can be seen that the 
SD is maintained below 1 dB as the number of iterations 
goes beyond 6.  Moreover, fewer than 2% outliers with 
SD in the range of 2-4 dB are observed, and outliers with 
SD greater than 4 dB are almost not found.  

Apart from the data for training, an independent 
database consisting of 60145 LSF vectors is used for 
evaluating the out-of-training case.  Table 4 lists the 
performance of the proposed 8-SPN 3SVQ at 18 bits/frame.  
The employed 3-stage codebooks are that derived from the 
reoptimization process with 20 iterations.  The tabulated 
data indicate an insignificant degradation for the 
out-of-training test.  We believe that such a result is due to 
similar distribution of prediction error vectors in both 
inside- and outside-training cases. 

 

6. Concluding remarks   

This paper presents a switched predictive network to 
decorrelate the LSF parameters in both temporal and 
spectral domains.  The parameters to be quantized are the 
prediction residuals.  As the variance of the prediction 
residuals is far less than that of the original LSF parameters, 
the switched prediction strategy makes certain the success 
of low bit-rate speech coding.  We employ a 3-stage 
vector quantizer to encode the prediction residual.  The 
combination of an 8-switched predictive network with 
3-stage VQ results in transparent quantization at a rate of 
18 bits per 20 ms frame.  This implementation adopts a 
regulation rule to properly order the LSF parameters and 
reduce the required computation by half through selective 
searching of network/codebook pairs.  Furthermore, the 
simulation with respect to the out-of-training group 
demonstrates the efficiency and robustness of the proposed 
quantizer. 
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Table 1:  Performance improvement due to switched predictive network in terms of MSE’s.   

 
 1-SPN 2-SPN 4-SPN 8-SPN 

MSE ( 310−× ) 0.6726 0.5193 0.4113 0.3443 

          
               

 
         

Table 2:  Quantization performance due to different criteria in codebook training.   

      

MSE criterion WMSE criterion  

Distortion 
measured at 1st stage 

Distortion 
measured at 3rd stage 

Distortion 
measured at 1st stage 

Distortion 
measured at 3rd stage 

Bit allocation SD WMSE SD WMSE SD WMSE SD WMSE

18 (6,6,6) 2.1216 0.4064 1.1063 0.1286 2.1293 0.4026 1.1033 0.1279

21 (7,7,7) 1.9963 0.3540 0.9226 0.0879 1.9996 0.3503 0.9235 0.0883

24 (8,8,8) 1.8773 0.3054 0.7693 0.0599 1.8770 0.3030 0.7706 0.0606

 
 
 
 

Table 3: Performance of the 8-SPN 3SVQ at rates of 18-22 bits/frame.  

 
Bits/frame SD (dB) 2-4 dB (%) >4 dB (%)
18 (3,5,5,5) 0.9689 2.1919 0 
19 (3,6,5,5) 0.9133 1.3016 0 
20 (3,6,6,5) 0.8562 0.5952 0 
21 (3,6,6,6) 0.8111 0.2238 0 

 
 
  
 

Table 4: Performance evaluation of the 18-bit 8-SPN 3SVQ for out-of-training data.  

 
Bits/frame Search range SD (dB) 2-4 dB (%) >4 dB (%) 
18 (3,5,5,5) Half 0.9958 2.2762 0.0033 
18 (3,5,5,5) Full 0.9837 2.0018 0.0033 
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Fig. 1  MSE’s between the actual and predicted LSF parameters. 

   -mark: by linear predictor 
   -mark: by predictive neural network 
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Fig. 2  Average spectral distortion between the original and quantized LSF parameters obtained from 

a single predictive network with 3-stage VQ using M-best searching. 
-mark:  M=1   -mark: M=4    
-mark:  M=2   -mark:  M=4 with regulation   
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Fig. 3   Average SD performance for various SPN-3SVQ at rates of 18-22 bits/frame.   
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Fig. 4  Illustration of incomplete codebook search in the 18-bit 8-SPN 3SVQ.  The bar chart reflects 

the accumulated percentage of the optimal codevector sequence acquired from a number of 
network/codebook pairs with better prediction; the overlaying plot indicates the average SD of 
the reconstructed LSF vectors. 
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Iterations SD (dB) 2-4 dB (%) >4 dB (%)

5 1.007 2.029 0.005
10 0.988 1.816 0.003
15 0.978 1.658 0.005
20 0.975 1.655 0.007

 
Fig. 5   Average SD versus iterations of codebook reoptimization with 8-SPN 3SVQ at 18 bits/frame.   

 
 


