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摘 要 
  

疊層複合材料的結構會因為製造的缺陷或因外物衝擊而產生層與層之間的分離，這種層與層之間的分

離稱為脫層。具脫層的複合材料結構體對於壓力的抵抗會隨著脫層的大小而降低。當壓力大到某一定值

時，複合材料會產生挫曲。在此篇論文裏，三度空間的有限元素分析法用來分析此種脫層複材的挫曲行

為，不同的脫層位置及形狀皆被研究以明瞭這些變化對於複材挫曲行為的影響。同時，非線性的接觸元素

被用來模擬脫層的地方。分析的結果與從已發表的實驗結果比較非常地吻合，故此法可以用來預測脫層複

材的挫曲行為。 
  
關鍵詞： 疊層複合材料、脫層、挫屈、有限元素分析法、及接觸元素 
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Abstract 
  

The laminate composite structure is easily to lose the bonding between laminas due to the manufacture defect, 

or impacted by the outside objects .The de-bonding between the plys observed in the laminate composite is called 

de-lamination. The resistance capability against the compression force for the laminated composite is going down 

very much. The raising compression force applied to the delaminated composite structure will cause the buckling 

phenomena. In this paper, 3-D finite element method is applied to analyze the buckling problems of the delaminated 

composite.  Different delaminated locations and lengths of composite laminate were studied. The nonlinear contact 

elements at the locations of de-lamination are applied. The published experimental data were used to check the 

analytical results. Good agreements were obtained between the finite element analyses and experimental results.  
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I. Introduction 
 

De-lamination represents  the interface de-bonding between the plys. Generally, de-lamination is a part of de-bonding 

interface, the causes of the de-bonding are very complicated and its location may be different. Sometime, the de-bonding is 

located at the center of the composite laminate or its edge. The de-bonding shape may be rectangular, circle, or elliptic, or 

irregular. For simply analyzing the buckling behavior of the structure with different delaminated shape, the regular de-

lamination shape such as  circle, rectangular, or elliptic are assumed. The strength of delaminated composite under the 

tensional force is unaffected that it is almost the same as the strength of the composite laminate without any damage. But, the 

compressive or buckling strength of delaminated composite is reduced so much. Therefore , the buckling phenomena are 

attracted lots of researches to do these investigations [Refs.1-20]. Generally, if the composite laminate plate without any 

defect inside, it will have the deformation under the compression force; when the external fore is increased up to a critical 

value, the composite laminate plate will produce the global buckling. If the composite laminate has the de-laminations, the 

composite laminate will produce the local buckling at the location of delaminating area or mixed buckling as shown  in Figure 

1 [3]. 

 
For composite laminate with de-laminations, the local buckling or mixed buckling will be observed early than the 

global buckling. Due to the de-lamination, the capability of resisting the compression force will be lower. Reducing the 

compression resis tance capability of the composite laminate will depend on the area of the de-lamination, the shape of the de-

lamination, and the location of the de-lamination. 

When the composite laminate with the de-lamination was  subjected to the external force, the composite laminate will 

have the buckling. At this time, the structure still can resist the external force until the de-lamination started to propagate. 

To determine the critical buckling load is very important when the composite laminate with compression force. Also the post 

buckling behavior of the laminate composite and the mode of the de-lamination propagation are also important for 

completely understanding the buckling behavior of the laminate composite beam or plate. 

 

In this paper, the complicated de-lamination shapes are considered to investigate its effect on the buckling load of the 

laminate composite. Due to the complicated geometry , the finite element method is used to perform the analysis. It also 

showed that the critical buckling load obtained from the theoretical analysis  is the same as the results  obtained from the finite 

element analysis for a simple column. The complicated de-lamination area in the composite laminate investigated in this 

paper will have circle area, triangular area, and rectangular area. Using the contact element modifies the de-lamination area 

and nonlinear buckling analyses are performed in this study. 

                                                                                                       
II. Theoretical Analysis Background 

 
Consider the buckling problem of a continuous column . The buckling problem is governed by the following 

differential equations:  
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Where  w(x)=transverse displacement; x=axial coordinate; E=modulus of elasticity; I(x)=moment of inertia; and P is 

compressive load at one and of the column.  

The supports were shown in Figure 2. Thus the boundary conditions will be         

 
w(0)=w(L)=0                                                                                                                                                                  (2)

           

w”(0)=w”(L)=0                                                                                                                                                               (3) 

 
The buckling load and the associated buckling mode can be obtained through solving the above differential equation 

(1), with the boundary  conditions in (2) and (3), which together give a boundary value problem. The critical load, Pcr, may 

have the form: 
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1. Finite  Element Analysis 

For simple column, the critical buckling load can be calculated from Equa.(4). The beam or plate with different 

geometrical location and shape of de-lamination are solved through the finite element analysis. The buckling load and mode 

can be analyzed and generally two different buckling analyses are considered: (1) linear buckling analysis; and (2) nonlinear 

buckling analysis. 

A linear buckling analysis is a simple method to get the critical buckling load. In this method, the bifu rcation point 

can be found with the co-existed conditions between the compression condition and the buckling condition as shown in 

Figurer 3. After bifurcation point was found, the problem can be transferred to be the eigenvalue-eigenvector problem. The 

analysis can be called eigenvalue buckling analysis. 

                                                                                                

 For a simple beam under the two applied forces shown in Fig.4, one is the axial force, Fo, the other is the transverse Fv , 

                                                                          

The governing equation can be written to be the following [3]: 

 

 

([k]+ë[s]){Ø}={f}                                                                                                                                                          (5)

                                                                                                                                                                

 

where [k] is the stiffness matrix; [s] is the stress stiffens matrix (caused by Fo), {Ø} is the transverse displacement vector; { f } 

is the force vector, and ë is a scale factor or called eigenvalue, sometime it is called load factor. Two cases are considered in 

here: (1)if Fo is a tension load (Fo>0), the stress stiffness matrix [s] will be a positive value, the stiffness of the beam will be 

improved in the transverse direction. The transverse displacement will be smaller than that without the tension load. (2) If Fo 

is a compression force (Fo<0). The structure will have the negative stress stiffness matrix, [s]. The stiffness of the column in 

the transverse direction will become weak. If Fo continue going up, the stiffness weakness effect in the transverse direction 

will become bigger. When the axial compression is continuing increasing, the stiffness of the structure is going to decrease. 

When the stiffness of structure became zero, the structure will be buckled. At the time of the buckling condition, ë will be 

called  ëcr, and the corresponding compression load, F, can become the buckling load, Fcr=ëcr Fo. The eigenvector, {Ø} 

corresponding to the buckling load will be the buckling mode of the structure.  

The buckling behavior of the structure will be observed when the compressible axial load will reduce the stiffness of 

the structure and reached to zero stiffness. At this time the deflection in the transverse direction will be increased to a very 

higher values. Therefore, the analysis of the buckling of the structure have to find the negative stiffness matrix of the 

structure, then find the critical buckling load in advance. The figure 5 is shown that three components of loading Nx, Ny , and 

Nxy are applied to plate.  

 

The negative stiffness matrix can be derived in the following.  The relationship between the stress and the loading can 

be expressed  

∫−
=

2

2

H

H xx dzN σ  

∫−
=

2

2

H

H yy dzN σ                                                                                                                                                     .(6) 

∫−
=

2

2

H

H xyxy dzN σ  

 

The strains can be defined as: 
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yxxy ww ,,
2

1=ε  

where ( )yxw ,  represents the displacement in z-direction. Now, the element with N nodes are accepted, the displacement 

for these elements can be expressed: 

[ ] { }dNw N31×=                                                                                                                                                        (8) 

where  [N] is the shape function of the element, 

           { } [ ]yNxNNyx wwwwwwd ,,11,1 L= is the matrix of the degree of freedom  

From (8), the derivative formula will be: 
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where n=3N is the number of degree of freedom for each element,  

[G] is the derivative of the shape function. If NX, NY, and Nxy  are not related to the displacement, W, then the work done by 

these forces: 
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the matrix in Esq. (10) cab be expressed by the other form: 
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Substituting Esq.(9) into Esq.(11) , the new equation can be obtained :  

       }]{[}{
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[ ]σK  is call the negative stiffness matrix of the plate.  In Equ.(13) , [ ]σK  is observed through the contribution of the 

force xN ， yN ，and xyN . If these forces are compressible, the [ ]σK  will be negative, the stiffness of the plate will be 

going down. If the compressive force is continuingly increase to make the stiffness of plate zero, the buckling load of the 

plate will be observed.  

 
2. Nonlinear Buckling Analysis 

The buckling load calculated from the linear buckling analysis is an ideal buckling strength based on the linear elastic 

theory.   Generally, it can only predict the upper bound of the buckling load of the structure, and generally the upper bound 

value is higher than that of the experimental results.  Especially in the case of the laminate with the small de-lamination 

length, the buckling load calculated from the linear buckling theory is too higher. For getting more reasonable results about 

the engineering buckle problem, the lower bound of the buckling load of the structure must be calculated through the 

nonlinear buckling analysis.  As though the linear buckling analysis can only get the upper bound of the buckling load, it is 

easily to reach the solution convergence and get the critical buckling load.  It can save lots of time compared with the 

nonlinear buckling analysis.  It also can apply the linear buckling analysis to investigate the buckling mode before the 

nonlinear buckling analysis is performed.  

In general, there have two methods to do the nonlinear buckling analysis.  In nonlinear buckling analysis, the large 

deflection is along with the buckling of the structure and the phenomena of nonlinear geometry will be observed.  Therefore, 

the above theory included the large deflection effect is thought as a nonlinear buckling analysis.  In the analytical proceeding, 

the external force must be applied step by step to make sure reach the convergence.  When the external fore reached a critical 
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value and can’t get the convergent solution, the critical buckling load is found. An important idea is that the de-lamination of 

the composite laminate will be modified by the surface to surface contact element.  The contact element will provide the 

nodes along the de-lamination cannot interfere each other and can get more perfect solution compared with the experimental 

observations. In this research, the buckling load will be calculated from the theoretical method, a linear finite element 

buckling analysis and nonlinear finite element buckling analysis and compared with each other. 

 
3. The Buckling Analysis Of Column 

In this section, a long steel column having the rectangular cross section will be analyzed.  The column is fixed at the 

bottom and an unit compressive load is applied at the top, see Fig.6 In Fig.6 the length of the column is L, the width is b , and 

the height is h.  All dimensional unit is cm, and the applied load is N.  So the unit of the critical buckling load is still Newton.  

The geometric dimensions are listed in the table 1. 

 
The Young’s model of steel=30*106 psi, Poisson’s ratio=0.3, and the moment of inertia : 

42093.043103.2094310208.5
12

3
cmcmin

bh
I =−×=−×==  

The critical buckling lo ad: )(533.38
4 2

2

lb
C
EI

Pcr == π
 

The boundary conditions and applied load for three different models are the same, only 1-D model is shown in Figs. 6 

and 7. 

 

The mode shape for three different models is the same, therein, only the mode shapes of 1-D model are shown in Figs. 

8-12. The buckling load for five different modes is listed in Table 2. 

 

The Comparison between the results obtained from 1-D, 2-D, and 3-D finite element modes and that of the theoretical 

solutions are summarized in the Table 3. 

   

From Table  2 and Table3, the results for the first critical bucking load obtained from the closed solutions are the same 

as that of the finite element analysis obtained from 1-D, 2-D or 3-D models. For the mode from 2 to 4, the critical buckling 

loads obtained from 2-D are  very closed to that from 3-D. The results observed from 1-D model have big deviation from that 

calculated from 2-D ad 3-D models. Therefore, the 3-D finite element model is more suitable to do the buckling analysis. 

 
4. The Buckling Analysis Of Delaminated Composite 

From the above analysis, the 3-D finite element analyses are  better to analyze the buckling analysis. In real case, the 

laminated composite with the pre -delamination can only be analyzed by using the 3-D finite element model because the crack 

between two sub-laminates  are easily created. In this section, the experimental data would be referred to the reference 1. The 

geometric shape dimensions are plotted in Fig. 13.  

 

Four half-circle de-laminations are created in the laminated composite beam. The material applied here is XAS/914 c 

and its ply orientations are { }s0%450/90/0/0/45 −°°°°°+ . 

In reference 1, four different specimens are designed to perform the experiments. Four different specimens have 

assigned different numbers: SCB3-5, SCB 3-6, SCB3-7 and SCB3-8 which included the different de-lamination lengths and 

locations. In the tests, the bottom of the laminated beam is fixed and the unit load is to apply at the top of the pre-de-

lamination beam. In Figure 12, the cones  section of the de-lamination beam is the rectangular, b is the length of the beam, c is 

the width, t is the thickness, a is the radius of the half-circle de-lamination area, and d is the distance between the end edge of 

beam to the cent of the de-lamination area. All dimensional unit is mm, the force unit is N, the unit of the buckling load will 

be N/mm. The following table listed all geometric dimensions for four different specimens. 

 

The material properties of composite material is show in the following  

28.0,8.4,12,130 ==== XYXYYX UandGpaGGpaEGpaE  

The critical load obtained from the experiment for the above specimens is listed in the following, 
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The buckling load for the same specimen calculated from the closed form solution {see ref.1} is  132.9N/mm. 

 
5. Finite Element Analysis For Delaminated Composite 

The boundary conditions and applied load on these four specimens are the same, only the finite element model for the 

specimen of SCB3-5 is show in Fig. 14. The exaggeration of the applied load on the top of the specimen is plotted in Figure 

15. The buckling analyses are  performed for the laminate plate without de-lamination and with de-laminations. For 

comparison, all of the analysis will get 6 modes and buckling load. Table 6 would present the 6-buckling load for the 

composite laminate without the de-lamination. The results from the other two analyses  are summarized in Tables 7 and 8. 

 
The results from the linear buckling analysis for 4 different specimens are listed in Table 7. Table 8 would list the 

buckling load of those four specimens calculated from the non-linear buckling load. 

 
The buckling load of specimen without de-lamination is generally higher 25% then that of the specimen with d 

lamination. Also the buckling load is increasing for higher buckling mode. The interesting results observed in Tables 7 and 8 

are that the buckling load are almost the same and doesn’t matter with the buckling analysis or nonlinear buckling analysis. 

The big difference between linear buckling analysis and nonlinear buckling analysis came from the deformation in the de-

lamination area. 

The load deformation of the linear buckling analysis is shown in Fig. 16. The deformation of the elements is along the 

de-lamination area that there has no any contact element between them.  

 
The linear buckling analytical results showed that the element will interfere with each other and it is not existed in 

real case. Fig. 17 showed the local deformation obtained by using the nonlinear buckling analysis and it is obvious that the 

local buckling would appear but the element didn’t c ross with each other. More discussions about the results shown in Table 

8 will be made in the following section. 

The specimens of SCB3-8 have the same de-lamination locations, but the de-lamination area of SCB3-5 is bigger than 

that of SCB3-8 (see Table 4). The results showed that the small buckling load would be observed when the de-lamination 

area is bigger. The buckling load for the higher mode would get a larger and the loading deviation between two cases become 

larger as the buckling mode is becoming bigger. The specimen of SCB3-6 and SCB3-7 has  the same de-lamination locations, 

but the de-lamination area of SCB3-6 is bigger than that of SCB3-7. The de-lamination area of specimen SCB3-6 is located 

at 5/6 plys and 9/10th plys, and that of specimen SCB3-5 is located at 6/7th plys and 8/9th plys. The distance in the thickness 

direction between the de-lamination of SCB3-6 is bigger than that the laminate of SCB3-5 had. The results showed that the 

de-lamination areas were too close in the multiple de-lamination laminate would reduce their buckling resistance capacity. 

The buckling modes of the multi-delamination laminate with the semi-circle de-lamination shape are  shown in Figs.18 to 23 

that the first 6 mode shapes are  plotted.  

 

Summarizations  of the above analytical results with the theoretical and experimental data are shown in the following. 

 

From the above calculations, the results obtained from the finite element analysis agree very well with that of the 

theoretical solutions. But big deviations are also observed among the experimental data, theoretical solution and results 

obtained from finite element analysis. The results obtained from finite element analysis are more closed to the experimental 

data than that of the theoretical analysis. The theoretical analysis cannot match with the experimental data because more 

simplification assumptions are held in the theoretical analysis. Therefore, the next sections will only apply the finite element 

analyses to do the buckling analyses and compare with the experimental data.  

 

III. Mesh Density Neighboring The De-lamination Area Effect On The 
Buckling Load 

 
 Based on the above discussions, the results obtained from the linear and nonlinear element analysis have much 

deviation from the experimental data. Based on the previous analytical results, the linear buckling analysis and nonlinear 

buckling analysis will get the same buckling load and global buckling mode shape except the local buckling deformation and 

computer running time. The computer running time for the nonlinear buckling analysis may spend 20 times of the linear 

buckling analysis. For reducing the running time to evaluate more reasonable critical buckling load, the linear buckling 
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analysis will be executed in this section. The Fig. 24 is the local mesh included the de-lamination area and the neighboring 

area. In the previous section, 10 elements in 33 cm length were created in the de-lamination neighboring area. To get more 

reliable solution, the length of the de-lamination neighboring area included 10 elements will be shrunken to be 20mm and 

5mm. After the length of the de-lamination neighboring area become s maller, it meant that the mesh density becomes  higher 

and didn’t affect the other. The results are shown in Fig. 28 that the higher mesh density neighboring the de-lamination area 

can get better results compared with the experimental data. And it is normal that the finite element solutions from higher 

mesh density are far from the theoretical results. From these results, the mesh density neighboring the de-lamination area 

must be dense and the mesh density effect must be considered. 

 
IV. De-lamination Area Considerations 

 
The structure subjected to the foreign force may cause the damage area and de-lamination area.  Generally the de-

lamination area is irregular in the laminate and it is hard to do the analysis or modeled.  For simplifying the analysis, the 

regular shape of the de-lamination area is assumed.  In the section, different de-lamination area shape is considered here to 

investigate its effect on the buckling load. Three different de-lamination shapes such as semicircle, triangle, and rectangle are 

assumed.  The semicircular de-lamination shape is already studied in the previous section and become the basic data.  For 

triangular and rectangular de-lamination areas are  also assumed existed at the different plys as the same as the description in 

Table 4.  These three different de-lamination shapes in the finite element model are shown in Figs. 26, 27, and 28.    

 

The six buckling load were summarized in Tables 13 to 16.  The results showed that the rectangular de-lamination area 

would get the lower buckling load.  The buckling load of each mode is very closed for the semicircular and triangular de-

lamination area.  Comparisons for the different shape de-lamination area are basically  that the rectangular de-lamination area 

are bigger than that of semicircular ad triangular shape would result in the lower buckling load due to a little bigger de-

lamination area and not affected by the de-lamination location and shape. 

 
V. Conclusions 

 
1. In the buckling analysis, the results obtained from the finite element analysis are agree very well with that of 

experimental data 

2. In theoretical analysis, the 1-D geometric dimension one are assumed, and in real care 3-D geometric is general, there 

fore theoretical salvation didn’t consider real geometric effect and why. The result calculated from the cortical 

method can’t match with the results  obtained from the experimental test and 3-D finite element analysis. But the 

results obtained from 1-D finite element analysis can completely with that of theoretical analysis. 

3. The buckling strength of the laminate without the de lamination is higher than that of the laminate with the de 

lamination. 

4. The buckling strength of the laminate will depend an the de lamination area and not strength related with the de 

lamination location and shape. 

5. For getting the best results from the finite element analysis, the mesh density of the area near or neigh boring the de 

lamination must be dense. The mesh density can be determined from the finite element analysis. 

6. The finite element analysis can get very good results compared with the experimental data 

7. The buckling load would become smaller when de laminations are  closed to the surface of the laminate.  
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Figure 1  the buckling mode (a)local mode(b)mixed mode(c)global mode [3] 

 
 
 

 
Figure 2  column with supports 

 
 
 

 
Figure 3  the solving procedures for the buckling analysis 

 
 
 

 
Figure 4  the applied forces in the simple support beam 
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Figure 5  the applied forces in XY plane for the plate 
 
 

 
Figure 6  the model of the column (a) 1-D model (b) 2-D model (c) 3-D model 

 
 
 

 
 

Figure 7  the boundary conditions and applied load of 1-D model 
 

 
 
 
 
 
 
 
 

(a)  (b)  (c) 
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Figure 8  the first buckling mode with the buckling load of 175.4 N 
 
 

 

 
 

Figure 9  the 2nd buckling mode with the buckling load of 1578.9 N 
 
 
 

 
 

Figure 10  the 3rd buckling mode with the buckling load of 4387.7 N 
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Figure 11  the 4th buckling mode with the buckling load of 8611.8 N 
 
 
 

 
 

Figure 12  the 5th buckling mode with the buckling load of 21453.7 N 
 
 

 
 

Figure 13  the composite specimen with four half-circle de-lamination areas 
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Figure 14  the finite element model for specimen of SCB3-5 
 
 
 

 
 

Figure 15  the applied forces in the model for specimen of SCB3-5 
 
 
 

 
 

Figure 16  the interference between elements in linear buckling analysis 
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Figure 17  no interference between elements in nonlinear buckling analysis 
 
 
 

 
 

Figure 18  the first mode of the specimen of SCB3-5 
 
 

 
 

Figure 19  the second mode of the specimen of SCB3-5 
 
 
 
 
 

No interference 
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Figure 20  the third mode of the specimen of SCB3-5 
 
 
 

 
 

Figure 21  the fourth mode of the specimen of SCB3-5 
 
 
 

 
 

Figure 22  the fifth mode of the specimen of SCB3-5 
 
 
 



宜蘭技術學報 第九期 工學  專輯 

 225 

 

 
 

Figure 23  the sixth mode of the specimen of SCB3-5 
 

 

 
 

Figure 24  the distance of the de-lamination neighboring area from the crack front 
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Figure 25  the comparison of the buckling load of specimen of SCB3-5 with different mesh density 
 
 
 
 
 
 
 

Crack 
front 
 

The 
distance 
from the 
crack 
front 



宜蘭技術學報 第九期 工學  專輯 

 226 

 
 

 
 

Figure 26  the specimen with the half-circle de-lamination area 
 
 
 

 
 

Figure 27  the specimen with the triangular de-lamination area 
 
 
 

 
 

Figure 28  the specimen with the rectangular de-lamination area 
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Table 1  Geometric Dimensions of Column with the square cress-section 

 
column (L) width (b) height (h) cross-section area 

2540cm 1.27cm 1.27cm 1.613cm2 
 
 
 

Table 2  The buckling load of five modes (N) 
 

 1-D 2-D 3-D 
Mode 1 175.4 176.1 177.4 
Mode 2 1578.9 1639.9 1655.9 
Mode 3 4387.7 4886.3 4959.9 
Mode 4 8611.8 10712.1 10960.5 
Mode 5 21453.7 20825.4 21530.1 

 
 
 

Table 3  The Comparisons between different models (unit=N) 
 

 Theoretical solution  FEM Err (%) 
1-D 175.4 175.4 0 
2-D 175.4 176.1 0.481 
3-D 175.4 177.4 1.141 

 
 
 

Table 4  Geometric Dimensions of Four Specimens 
 

 SCB3-5 SCB3-6 SCB3-7 SCB3-8 
Specimen length (mm) 458 458 458 458 
Specimen width (mm) 90 90 90 90 

Specimen thickness (mm) 1.75 1.75 1.75 1.75 
De lamination length (mm) 25 25 18.75 18.75 

The location of De 
lamination 

6/7th plys and 
8/9th plys 

5/6th plys and 
9/10th plys 

5/6th plys and 
9/10th plys 

6/7th plys and 
8/9th plys 

 
 

Table 5  Experiment critical load 
 

 SCB3-5 SCB3-6 SCB3-7 SCB3-8 

Buckling load (N/mm) 113.9 116.6 110.7 114.9 

 
 
 

Table 6  The buckling load for the specimen without the de-lamination 
 

                                                        load 
Mode 

Critical load (N/mm) 

Mode1 166.22 
Mode2 1494.1 
Mode3 4139.6 
Mode4 8081.4 
Mode5 13286 
Mode6 19694 
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Table 7  The buckling load (linear buckling analysis) 

 
 SCB3-5 (N/mm) SCB3-6 (N/mm) SCB3-7 (N/mm) SCB3-8 (N/mm) 
Mode1 126.86 138.7 141.14 129.39 
Mode2 1136.4 1240.6 1264.5 1160.4 
Mode3 3114.5 3391.1 3477.1 3198.7 
Mode4 5967.8 6478.2 6683.6 6159.5 
Mode5 9542.7 10262 10639 9841.6 
Mode6 13440 14173 14733 13853 

 
 

Table 8 the buckling load (nonlinear buckling analysis) 
 

 SCB3-5 (N/mm) SCB3-6 (N/mm) SCB3-7 (N/mm) SCB3-8 (N/mm) 
Mode1 126.87 138.74 141.16 129.39 
Mode2 1136.5 1241 1264.7 1160.5 
Mode3 3115 3393 3477.8 3198.9 
Mode4 5968.9 6484.4 6685.6 6159.8 
Mode5 9545.1 10281 10643 9842.2 
Mode6 13444 14223 14743 13853 

 
 

Table 9  the results comparison between different methods (unit=N/mm) 
 

 Theory Experimental data Linear analysis  Nonlinear Analysis  
SCB3-5 132.9 113.9 126.86 126.87 
SCB3-6 132.9 116.6 138.7 138.74 
SCB3-7 132.9 110.7 141.14 141.16 
SCB3-8 132.9 114.9 129.39 129.39 

 
 

Table 10  the error percentage of different methods (unit=%) 
 

 Linear analysis 
and theory 

Linear analysis 
and experimental 

data 

Nonlinear 
Analysis and 

theory 

Nonlinear Analysis 
and experimental 

data 
SCB3-5 4.545 10.216 4.537 10.223 
SCB3-6 4.364 15.934 4.394 15.958 
SCB3-7 6.2 21.567 6.215 21.578 
SCB3-8 2.641 11.199 2.641 11.199 

 
 
 

Table 11  the buckling load comparison from three methods (unit=N/mm) 
 

 Close form solution Experimental values Re-analysis of FEA  
SCB3-5 132.9 113.9 114.73 
SCB3-6 132.9 116.6 128.59 
SCB3-7 132.9 110.7 127.94 
SCB3-8 132.9 114.9 113.66 

 
 

Table 12 the error percentage from three methods (unit：%) 
 

 Re-analysis of FEA/closed form solution Re-analysis of FEA/experimental values 
SCB3-5 13.672 0.723 
SCB3-6 3.243 9.324 
SCB3-7 3.732 13.475 
SCB3-8 14.477 1.091 
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Table 13 the buckling load of specimen SCB3-5 with different de-lamination shapes (unit=N/mm) 

 
 Semicircle Triangle Rectangle 

Mode 1 114.73 113.78 111.43 
Mode 2 1030.9 1024.9 997.25 
Mode 3 2818 2822.6 2718.7 
Mode 4 5387.3 5471.4 5172.4 
Mode 5 9098.4 9141.4 8349.5 
Mode 6 13049 13307 11686 

 
 
 

Table 14 the buckling load of specimen SCB3-6 with different de-lamination shapes (unit=N/mm) 
 

 Semicircle Triangle Rectangle 
Mode 1 128.59 127.51 126.17 
Mode 2 1152.4 1145.6 1124.6 
Mode 3 3148.2 3153.4 3044.1 
Mode 4 6006.1 6094.8 5714.9 
Mode 5 9873.9 10001 8940.1 
Mode 6 13827 14227 11781 

 
 
 

Table 15 the buckling load of specimen SCB3-7 with different de-lamination shapes (unit=N/mm) 
 

 Semicircle Triangle Rectangle 
Mode 1 127.94 127.3 126.49 
Mode 2 1150.3 1145.6 1132.5 
Mode 3 3168.7 3166.6 3096.2 
Mode 4 6129.4 6157.2 5903.3 
Mode 5 10105 10124 9452.7 
Mode 6 14381 14476 12950 

 
 
 

Table 16 the buckling load of specimen SCB3-8 with different de-lamination shapes (unit=N/mm) 
 

 Semicircle Triangle Rectangle 
Mode 1 113.66 113.08 111.69 
Mode 2 1024.7 1020.3 1003.7 
Mode 3 2826.4 2825.2 2761.1 
Mode 4 5486.3 5516.3 5323.3 
Mode 5 9209.7 9205.2 8710.5 
Mode 6 13436 13497 12454 

 


