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Abstract

The laminate composite structure is easily to lose the bonding between laminas due to the manufacture defect,
or impacted by the outside objects .The de-bonding between the plys observed in the laminate composite is called
de-lamination. The resistance capability against the compression force for the laminated composite is going down
very much. The raising compression force applied to the delaminated composite structure will cause the buckling
phenomena. In this paper, 3-D finite element method is applied to analyze the buckling problems of the delaminated
composite. Different delaminated locations and lengths of composite laminate were studied. The nonlinear contact
elements at the locations of de-lamination are applied. The published experimental data were used to check the
analytical results. Good agreements were obtained between the finite element analyses and experimental results.
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|. Introduction

De-lamination represents the interface de-bonding between theplys. Generally, de-lamination is apart of de-bonding
interface, the causes of the de-bonding are very complicated and its location may be different. Sometime, the de-bonding is
located at the center of the composite laminate or its edge. The de-bonding shape may be rectangular, circle, or elliptic, or
irregular. For simply analyzing the buckling behavior of the structure with different delaminated shape, the regular de-
lamination shape such @ circle, rectangular, or elliptic are assumed. The strength of delaminated composite under the
tensional force is unaffected that it is almost thesame as the strength of the composite laminate without any damage. But, the
compressive or buckling strength of delaminated composite is reduced so much. Therefore, the buckling phenomena are
attracted lots of researches to do these investigations [Refs.1-20]. Generally, if the composite laminate plate without any
defect inside, it will have the deformation under the compression force; when the external fore is increased up to acritical
value, the composite laminate plate will produce the global buckling. If the composite laminate has the de-laminations, the
composite laminate will produce the local buckling at the location of delaminating area or mixed buckling asshown in Figure
1[3].

For composite laminate with de-laminations, the local buckling or mixed buckling will be observed early than the
global buckling. Due to the de-lamination, the capability of resisting the compression force will be lower. Reducing the
compression resistance capability of the composite laminate will depend onthe area of thede-lamination, the shape of thede-
lamination, and thelocation of the de-lamination.

When the composite laminate with the de-lamination was subjected to the external force, the composite laminate will
have thebuckling. At thistime, the structure still can resist theexternal force until thede-lamination started to propagate.

To determine the critical buckling load is very important whenthe composite laminate with compression force. Also thepost
buckling behavior of the laminate composite and the mode of the de-lamination propagation are aso important for
completely understanding thebuckling behavior of the laminate composite beam or plate.

In this paper, thecomplicated de-lamination shapes are considered toinvestigate its effect on the buckling load of the
laminate composite. Due to the complicated geometry, the finite element method is used to perform the analysis. It also
showed that the critical buckling load obtained fromthe theoretical analysis isthe same as theresults obtained fromthefinite
element analysis for a simple column. The complicated de-lamination area in the composite laminate investigated in this
paper will have circle area, triangular area, and rectangular area. Using the contact element modifies the de-lamination area
and nonlinear buckling analyses are performed in this study.

|. Theoretical Analysis Background

Consider the bucklingproblem of a continuouscolumn. The buckling problem is governed by the following
differential equations:
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Where w(x)=transverse displacement; x=axial coordinate; E=modulus of elasticity; |(x)=moment of inertia; and Pis
compressiveload at one and of the column.
The supports were shown in Figure 2. T hus the boundary conditions will be

w(0)=w(L)=0 2
w’(0)=w'(L)=0 3
The buckling load and the associated buckling mode can be obtained through solving the above differential equation

(1), with the boundary conditionsin (2) and (3), which together give a boundary value problem. The critical load, Py, may
have the form:
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1. Finite Element Analysis

For simple column, the critical buckling load can be calculated from Equa.(4). The beam or plate with different
geometrical location and shape of de-lamination are solved through the finite element analysis. The buckling load and mode
can be analyzed and generally two different buckling analyses are considered: (1) linear buckling analysis; and (2) nonlinear
bucklinganalysis.

A linear buckling analysis is a simple method to get the critical buckling load. In this method, the bifu rcation point
can be found with the co-existed conditions between the compression condition and the buckling condition as shown in
Figurer 3. After bifurcation point was found, the problem can be transferred to be the eigenvalue-eigenvector problem. The
analysiscan be called eigenvalue buckling analysis.

For asimple beam under the two applied forces shown in Fig.4, oneisthe axial force, F,, the other isthetransverseF, ,

The governing equation can be written to be thefollowing [3]:

([k]+é[sI{ 3 ={f} ©)

where [K] isthe stiffness matrix; [s] isthe stress stiffens matrix (caused by F,), { @ isthetransverse displacement vector; { f }
istheforce vector, and & isascalefactor or called eigenvalue, sometimeit is called |oad factor. Two cases are considered in
here: (1)if F,isatension load (F,>0), the stress stiffness matrix [s] will be apositive value, the stiffness of the beam will be
improved inthetransverse direction. The transverse displacement will be smaller than that without the tension load. (2) If F,
isacompression force (F,<0). The structure will have the negative stress stiffness matrix, [s]. The stiffness of the columnin
the transverse direction will becorme weak. If F, continue going up, the stiffness weakness effect in the transverse direction
will become bigger. When the axial compression is continuing increasing, the stiffness of the structure is going to decrease.
When the stiffness of structure became zero, the structure will be buckled. At the time of the buckling condition, & will be
called &, and the corresponding compression load, F, can become the buckling load, F.,=&. F,. The eigenvector, {&
corresponding to the buckling load will be the buckling mode of the structure.

The buckling behavior of the structurewill be observed when the compressible axial |oad will reduce the stiffness of
the structure and reached to zero stiffness. At thistimethe deflection in the transverse direction will beincreased to avery
higher values. Therefore, the analysis of the buckling of the structure have to find the negative stiffness matrix of the
structure, then find the critical buckling load in advance. Thefigure 5 is shown that three components of loading N,, Ny, and
Ny, are applied to plate.

The negative stiffness matrix can be derived in thefollowing. The relationship between the stress and the loading can
be expressed

N, = /e s,dz
/2
\H/2
N, = Qﬂzsydz ©

N, =@ s,d
xy_qﬂzsxyz

Thestrainscan bedefined as:

1
=—wW
€ > W

212



1
e =W, ™

€ = EW,XWJ
where \N(X, y) represents the displacement in zdirection. Now, the element with N nodes are accepted, the displacement
for these elements can be expressed:

w=[N[, ;. {d} ©

where [N] isthe shape function of the element,

{d} = |_W1V\I’X1Wy1 v W W W Jisthe matrix of the degree of freedom
From (8), the derivative formulawill be:

[RVM
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wheren=3N isthe number of degree of freedom for each element,
[G] isthe derivative of the shape function. If Ny, Ny, and N,, are not related to the displacement, W, then the work done by
these forces:

P, :Qge—lwiNx +1W2yNY +wxwyNXY9dA (10)
e2 ' 2 o )
the matrix in Esg. (10) cab be expressed by the other form:

T
1 Jdw, i éN N, U
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Substituting Esqg.(9) into Esq.(11) , the new equation can be obtained :
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[KS ] is cal the negative stiffness matrix of the plate. In Equ.(13) , [KS ] is observed through the contribution of the

force N, N , ad N 5y - I these forces are compressible, the [KS ] will be negative, the stiffness of the plate will be

going down. If the compressive force is continuingly increase to make the stiffness of plate zero, the buckling load of the
plate will be observed.

2. Nonlinear Buckling Analysis

The buckling load calculated from the linear buckling analysisisan ideal buckling strength based on the linear elastic
theory. Generadly, it can only predict the upper bound of the buckling load of the structure, and generally the upper bound
value is higher than that of the experimental results. Especialy in the case of the laminate with the small de-lamination
length, the buckling load calculated from the linear buckling theory is too higher. For getting more reasonable results about
the engineering buckle problem, the lower bound of the buckling load of the structure must be calculated through the
nonlinear buckling analysis. Asthough the linear buckling analysis can only get the upper bound of the buckling load, it is
easily to reach the solution convergence and get the critical buckling load. It can save lots of time compared with the
nonlinear buckling analysis. It aso can apply the linear buckling analysis to investigate the buckling mode before the
nonlinear buckling analysisis performed.

In general, there have two methods to do the nonlinear buckling analysis. Innonlinear buckling analysis, the large
deflection is along with the buckling of thestructure and the phenomena of nonlinear geometry will be observed. Therefore,
the above theory included the large deflection effect isthought as anonlinear buckling analysis. Intheanalytical proceeding,
the external force must be applied step by step to make sure reach the convergence. When the external fore reached acritical
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value and can’ t get theconvergent solution, the critical buckling load isfound. Animportant ideaisthat the de-lamination of
the composite laminate will be modified by the surface to surface contact element. The contact element will provide the
nodes along the de-lamination cannot interfere each other and can get more perfect solution compared with the experimental
observations. In this research, the buckling load will be calculated from the theoretical method, a linear finite element
buckling analysis and nonlinear finite element buckling analysis and compared with each other.

3. The Buckling Analysis Of Column

Inthissection, along steel column having the rectangular cross section will beanalyzed. The columnisfixed at the
bottom and an unit compressive load is applied at the top, see Fig.6 In Fig.6 the length of the columnisL, thewidthisb, and
the heightish. All dimensional unit is cm, and the applied loadisN. So the unit of the critical buckling load is still Newton.
The geometric dimensions arelisted in the table 1.

The Y oung’ smodel of steel=30* 108 psi, Poisson' sratio=0.3, and the moment of inertia:
3
bh _ 3. ; R
| =~ =5.28" 10 Sin% =209.3" 10" 3cm?® = 0.2003 cm?

2
El
Thecritical bucklingload: P, = F;CZ

=38.533(Ib)

The boundary conditions and applied load for three different models are the same, only 1-D model is shown in Figs. 6
and 7.

The mode shape for three different model sisthe same, therein, only the mode shapes of 1-D model are shown in Figs.
8-12. The buckling load for five different modesislisted in Table 2.

The Comparison between the results obtained from 1-D, 2-D, and 3-D finite element modes and that of thetheoretical
solutions aresummarized inthe Table 3.

From Table 2 and Table3, theresultsfor thefirst critical bucking load obtained from the closed solutions are the same
as that of the finite element analysis obtained from 1-D, 2-D or 3-D models. For the mode from 2 to 4, the critical buckling
loads obtained from 2-D are very closed to that from 3-D. The resultsobserved from 1-D model have big deviation from that
calculated from 2-D ad 3-D models. Therefore, the 3-D finite element model is moresuitable to do the buckling analysis.

4. The Buckling Analysis Of Delaminated Composite

From the above analysis, the 3-D finite element analyses are better to analyze the buckling analysis. In real case, the
laminated composite with the pre-delamination can only be analyzed byusing the 3-D finite element model because thecrack
between twosub-laminates areeasily created. In this section, theexperimental datawould be referred to the reference 1. The
geometric shape dimensions are plotted in Fig. 13.

Four half-circle de-laminations are created in the laminated composite beam. The material applied hereis XAS/914 ¢
anditsply orientations are {+45°/ 0°/0°/90°/0° - 45%0} .-

In reference 1, four different specimens are designed to perform the experiments. Four different specimens have
assigned different numbers: SCB3-5, SCB 3-6, SCB3-7 and SCB3-8 which included the different de-lamination lengths and
locations. In the tests, the bottom of the laminated beam is fixed and the unit load is to apply at the top of the pre-de-
lamination beam. In Figure 12, the cones section of the de-lamination beam isthe rectangular, b isthe length of the beam, cis
thewidth, tisthe thickness, aistheradiusof the half-circlede-lamination area, and d is the distance between the end edge of
beam to thecent of the de-lamination area. All dimensbnal unit is mm, theforce unit is N, the unit of the buckling load will
be N/mm. The following table listed all geometric dimensionsfor four different specimens.

The material properties of composite material is show in the following

E, =130Gpa, E, =12Gpa, G,, =4.8Gpa,and U ,, =0.28

The critical loadobtained from theexperiment for theabove specimensislisted in thefollowing,
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The buckling load for thesame specimen calculated fromthe closed form solution { seeref.1} is 132.9N/mm.

5. Finite Element Analysis For Delaminated Composite

The boundary conditions and applied load onthese four specimens are thesame, only the finite element model for the
specimen of SCB3-5 is show in Fig. 14. Theexaggeration of the applied load on the top of the specimen is plotted in Figure
15. The buckling analyses are performed for the laminate plate without de-lamination and with de-laminations. For
comparison, al of the analysis will get 6 modes and buckling load. Table 6 would present the 6-buckling load for the
composite laminate without the de-lamination. The resultsfromthe other two analyses aresummarized in Tables 7 and 8.

The results from the linear buckling analysis for 4 different specimens are listed in Table 7. Table 8 would list the
buckling load of those four specimenscal culated from the non-linear buckling load.

Thebuckling load of specimen without de-lamination is generally higher 25% then that of the specimen with d
lamination. Also the buckling load isincreasing for higher buckling mode. Theinteresting resultsobserved in Tables 7 and 8
are that the buckling load are almost thesame and doesn’ t matter with the buckling analysis or nonlinear buckling analysis.
Thebig difference between linear buckling analysis andnonlinear buckling analysis came from the deformation inthe de-
lamination area.

Theload deformation of the linear buckling analysisis shownin Fig. 16. The deformation of the elementsisalong the
de-lamination areathat there has no any contact el ement between them.

The linear buckling analytical results showed that the element will interfere with each other and it is not existed in
real case. Fig. 17 showed the local deformation obtained by using the nonlinear buckling analysis and it is obvious that the
local buckling would appear but the element didn’ t cross with each other. More discussions about the results shown in Table
8 will be made in the following section.

The specimens of SCB3-8 have the same de-lamination locations, but the de-lamination areaof SCB3-5 is bigger than
that of SCB3-8 (see Table 4). The results showed that the small buckling load would be observed when the de-lamination
areaisbigger. The buckling load for the higher mode would get alarger and the | oading deviation between two cases become
larger as the buckling mode isbecoming bigger. Thespecimen of SCB3-6 and SCB3-7 has the same de-lamination locations,
but the de-lamination area of SCB3-6 is bigger than that of SCB3-7. The de-lamination area of specimen SCB3-6 is located
at 5/6 plys and 9/10th plys, and that of specimen SCB3-5 islocated at 6/7" plys and 8/9" plys. The distance in the thickness
direction between the de-lamination of SCB3-6 is bigger than that the laminate of SCB3-5 had. The results showed that the
de-lamination areas were too close in the multiple de-lamination laminate would reduce their buckling resistance capacity.
The buckling modes of the multi-delamination laminate with the semi-circle de-lamination shape are shown in Figs.18 to 23
that the first 6 modeshapesare plotted.

Summarizations of the above analytical results with the theoretical and experimental data are shown in the following.

From the above calculations, the results obtained from the finite element analysis agree very well with that of the
theoretical solutions. But big deviations are also observed among the experimental data, theoretical solution and results
obtained from finite element analysis. The results obtained from finite element analysis are more closed to the experimental
data than that of the theoretical analysis. The theoretical analysis cannot match with the experimental data because more
simplification assumptions are held in the theoretical analysis. Therefore, the next sectionswill only applythe finite element
analysesto do the buckling analyses and compare with theexperimental data.

[11. Mesh Density Neighboring The De-lamination Area Effect On The
Buckling Load

Based on the above discussions, the results obtained from the linear and nonlinear element analysis have much
deviation from the experimental data. Based on the previous analytical results, the linear buckling analysis and nonlinear
buckling analysis will getthe same buckling load and global buckling mode shapeexcept the local buckling deformation and
computer running time. The computer running time for the nonlinear buckling analysis may spend 20 times of the linear

buckling analysis. For reducing the running time to evaluate more reasonable critical buckling load, the linear buckling
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analysis will be executed in this section. The Fig. 24 is the local mesh included the de-lamination area and the neighboring
area. In the previous section, 10 elements in 33 cm length were created in the de-lamination neighboring area. To get more
reliable solution, the length of the de-lamination neighboring area included 10 elements will be shrunken to be 20mm and
5mm. After thelength of the de-lamination neighboring areabecome smaller, it meant that the meshdensity becomes higher
and didn’ t affect the other. The results are shown in Fig. 28 that the higher mesh density neighboring the de-lamination area
can get better results compared with the experimental data. And it is normal that the finite element solutions from higher
mesh density are far from the theoretical results. From these results, the mesh density neighboring the de-lamination area
must be dense and the mesh density effect must beconsidered.

V. De-lamination Area Considerations

The structure subjected to the foreign force may cause the damage area and de-lamination area. Generally the de-
lamination area is irregular in the laminate and it is hard to do the analysis or modeled. For simplifying the analysis, the
regular shape of the de-lamination area is assumed. In the section, different de-lamination area shape is considered here to
investigateitseffect on the buckling load. Three different de-lamination shapes such assemicircle, triangle, and rectangle are
assumed. The semicircular de-lamination shape is aready studied in the previous section and become the basic data. For
triangular and rectangular de-lamination areas are also assumedexisted at the different plysas the same as the description in
Table4. Thesethree different de-lamination shapesin the finite element model are shown in Figs. 26, 27, and 28.

Thesix buckling load were summarized in Tables 13 to 16. The results showed that therectangular de-lamination area
would get the lower buckling load. The buckling load of each mode is very closed for the semicircular and triangular de-
lamination area. Comparisons for the different shapede-lamination area arebasically that the rectangular de-lamination area
are bigger than that of semicircular ad triangular shape would result in the lower buckling load due to a little bigger de-
lamination areaand not affected by the de-lamination location and shape.

V. Conclusions

1 Inthe buckling analysis, the results obtained from the finite element analysis are agree very well with that of
experimental data
2. Intheoretical analysis, the 1-D geometric dimension one areassumed, and in real care 3-D geometric is general, there

fore theoretical salvation didn’ t consider real geometric effect and why. The result calculated from thecortical
method can’ t match with theresults obtained from theexperimental test and 3-D finite element analysis. But the
results obtained from 1-D finite element analysis can completely with that of theoretical analysis.

3. The buckling strength of the laminate without the de lamination is higher than that of the laminate with the de
lamination.

4. The buckling strength of the laminate will dependan the de lamination area and not strength related with the de
lamination location and shape.

5. For getting the best resultsfrom the finite element analysis, the mesh density of the areanear or neigh boring the de
lamination must be dense. The mesh density can be determined from the finite element analysis.
Thefinite element analysis can get very good results compared with the experimental data

7. The buckling load wouldbecome smaller when delaminations are closed to the surface of the laminate.
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Figure 1 the buckling mode (a)local mode(b)mixed mode(c)global mode [3]
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Figure 3 the solving procedures for the buckling analysis
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Figure 4 the applied forces in the simple support beam
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Figure 5 the applied forces in XY plane for the plate

|y bt | (.

@ (b) (©

Figure 6 the model of the column (a) 1-D model (b) 2-D model (c) 3-D model
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Figure 7 the boundary conditions and applied load of 1-D model
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Figure 8 the first buckling mode with the buckling load of 175.4 N
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Figure 9 the 2nd buckling mode with the buckling load of 1578.9 N
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Figure 10 the 3rd buckling mode with the buckling load of 4387.7 N
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Figure 11 the 4th buckling mode with the buckling load of 8611.8 N
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Figure 12 the 5th buckling mode with the buckling load of 21453.7 N

Figure 13 the composite specimen with four halfcircle de-lamination areas
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Figure 14 the finite element model for specimen of SCB3-5
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Figure 15 the applied forces in the model for specimen of SCB3-5
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Figure 16 the interference between elements in linear buckling analysis
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Figure 17 no interference between elements in nonlinear buckling analysis
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Figure 18 the first mode of the specimen of SCB3-5
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Figure 19 the second mode of the specimen of SCB3-5
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Figure 20 the third mode of the specimen of SCB3-5
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Figure 21 the fourth mode of the specimen of SCB3-5
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Figure 22 the fifth mode of the specimen of SCB3-5
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Figure 23 the sixth mode of the specimen of SCB3-5
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Figure 24 the distance of the de-lamination neighboring area from the crack front
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Figure 26 the specimen with the halfcircle de-lamination area
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Figure 27 the specimen with the triangular de-lamination area
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Figure 28 the specimen with the rectangular de-lamination area
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Table 1 Geometric Dimensions of Column with the square cress-section

column (L) width (b) height (h) Cross-section area
2540cm 1.27cm 1.27cm 1.613cnf
Table 2 The buckling load of five modes (N)
1-D 2-D 3D

Mode 1 175.4 176.1 177.4

Mode 2 1578.9 1639.9 1655.9

Mode 3 4387.7 4886.3 4959.9

Mode 4 8611.8 10712.1 10960.5

Mode5 21453.7 20825.4 21530.1

Table 3 The Comparisons between different models (unit=N)

Theoretical solution FEM Err (%)
1-D 175.4 175.4 0
2-D 175.4 176.1 0.481
3D 175.4 177.4 1.141

Table 4 Geometric Dimensions of Four Specimens

SCB3-5 SCB3-6 SCB3-7 SCB3-8
Specimen length (mm) 458 458 458 458
Specimen width (mm) 0 0 0 20
Specimen thickness (mm) 1.75 175 1.75 175
De lamination length (mm) 25 25 18.75 18.75
Thelocation of De 6/7th plys and 5/6th plysand 5/6th plys and 6/7th plys and
lamination 8/9th plys 9/10th plys 9/10th plys 8/9th plys
Table 5 Experiment critical load
SCB3-5 SCB3-6 SCB3-7 SCB3-8
Buckling load (N/mm) 113.9 116.6 110.7 114.9

Table 6 The buckling load for the specimen without the de-lamination

load Critical load (N/mm)
Mode
Model 166.22
Mode2 1494.1
Mode3 4139.6
Mode4 8081.4
Modeb5 13286
Mode6 19694
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Table 7 The buckling load (linear buckling analysis)

SCB3-5 (N/mm) SCB3-6 (N/mm) SCB3-7 (N/mm) SCB3-8 (N/mm)
Model 126.86 138.7 141.14 129.39
Mode2 1136.4 1240.6 1264.5 1160.4
Mode3 3114.5 33911 3477.1 3198.7
Moded 5967.8 6478.2 6683.6 6159.5
Mode5 9542.7 10262 10639 9841.6
Mode6 13440 14173 14733 13853
Table 8 the buckling load (nonlinear buckling analysis)
SCB3-5 (N/mm) SCB3-6 (N/mm) SCB3-7 (N/mm) SCB3-8 (N/mm)
Model 126.87 138.74 141.16 129.39
Mode2 1136.5 1241 1264.7 1160.5
Mode3 3115 3393 3477.8 3198.9
Mode4 5968.9 6484.4 6685.6 6159.8
M ode5 9545.1 10281 10643 9842.2
M ode6 13444 14223 14743 13853
Table 9 the results comparison between different methods (unit=N/mm)
Theory Experimental data Linear analysis Nonlinear Analysis
SCB3-5 132.9 113.9 126.86 126.87
SCB3-6 132.9 116.6 138.7 138.74
SCB3-7 132.9 110.7 141.14 141.16
SCB3-8 132.9 114.9 129.39 129.39
Table 10 the error percentage of different methods (unit=%)
Linear analysis Linear analysis Nonlinear Nonlinear Analysis
and theory and experimental Analysis and and experimental
data theory data
SCB3-5 4.545 10.216 4,537 10.223
SCB3-6 4.364 15.934 4.394 15.958
SCB3-7 6.2 21.567 6.215 21.578
SCB3-8 2.641 11.199 2.641 11.199
Table 11 the buckling load comparison from three methods (unit=N/mm)
Close form solution Experimental values Re-analysis of FEA
SCB3-5 132.9 113.9 114.73
SCB3-6 132.9 116.6 128.59
SCB3-7 132.9 110.7 127.94
SCB3-8 132.9 114.9 113.66
Table 12 the error percentage from three methods (unit %)
Re-analysis of FEA/closed form solution | Re-analysis of FEA/experimental values
SCB3-5 13.672 0.723
SCB3-6 3.243 9.324
SCB3-7 3.732 13.475
SCB3-8 14.477 1.091
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Table 13 the buckling load of specimen SCB3-5 with different de-lamination shapes (unit=N/mm)

Semicircle Triangle Rectangle
Mode 1 114.73 113.78 111.43
Mode 2 1030.9 1024.9 997.25
Mode 3 2818 2822.6 2718.7
Mode 4 5387.3 5471.4 5172.4
Mode 5 9098.4 9141.4 8349.5
Mode 6 13049 13307 11686

Table 14 the buckling load of specimen SCB3-6 with different de-lamination shapes (unit=N/mm)

Semicircle Triangle Rectangle
Mode 1 128.59 127.51 126.17
Mode 2 1152.4 1145.6 1124.6
Mode 3 3148.2 3153.4 3044.1
Mode 4 6006.1 6094.8 5714.9
Mode 5 9873.9 10001 8940.1
Mode 6 13827 14227 11781

Table 15 the buckling load of specimen SCB3-7 with different de-lamination shapes (unit=N/mm)

Semicircle Triangle Rectangle
Mode 1 127.94 127.3 126.49
Mode 2 1150.3 1145.6 1132.5
Mode 3 3168.7 3166.6 3096.2
Mode 4 6129.4 6157.2 5903.3
Mode 5 10105 10124 9452.7
Mode 6 14381 14476 12950

Table 16 the buckling load of specimen SCB3-8 with different de-lamination shapes (unit=N/mm)

Semicircle Triangle Rectangle
Mode 1 113.66 113.08 111.69
Mode 2 1024.7 1020.3 1003.7
Mode 3 2826.4 2825.2 2761.1
Mode 4 5486.3 5516.3 5323.3
Mode 5 9209.7 9205.2 8710.5
Mode 6 13436 13497 12454
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