國 立 宜 蘭 大 學

104學年度研究所碩士班考試入學

生物化學試題

(生物技術與動物科學系生物技術碩士班)

准考證號碼:

《作答注意事項》

- 1.請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2.考試時間:100分鐘。
- 3.本試卷共有單選題 50 題, 一題 2 分, 共計 100 分。
- 4.請將答案寫在答案卷上。
- 5.考試中禁止使用大哥大或其他通信設備。
- 6.考試後,請將試題卷及答案卷一併繳交。
- 7.本試卷採雙面影印,請勿漏答。
- 8.應試時不得使用電子計算機。

第1頁,共10頁

單選題 (共 50 題, 每題 2 分)

()	1. The pH of a sample of blood is 7.4, while gastric juice is pH 1.4. The blood sample has:
		(A) 0.189 times the [H ⁺] as the gastric juice.
		(B) 5.29 times lower [H ⁺] than the gastric juice.
		(C) 6 times lower [H ⁺] than the gastric juice.
		(D) 6,000 times lower [H ⁺] than the gastric juice.
		(E) a million times lower [H ⁺] than the gastric juice.
()	2. Which of the following is <i>not</i> considered a noncovalent interaction?
	,	(A) Electrostatic interaction
		(B) Hydrophobic interaction
		(C) Disulfide bond
		(D) Hydrogen bond
,	`	(E) van der Waals interaction
()	3. In glycoproteins, the carbohydrate moiety is always attached through the amino acid residues:
		(A) asparagine, serine, or threonine
		(B) aspartate or glutamate
		(C) glutamine or arginine
		(D) glycine, alanine, or aspartate
		(E) tryptophan or tyrosine
()	4. Which of the following peptides exhibits the highest UV absorbance at the
		wavelength of 280 nm?
		(A) Thr-Trp-Tyr
		(B) Asp-Thr-Arg
		(C) His-Pro-Gly
		(D) Asn-Phe-Gln
		(E) Glu-Lys-Ile
()	5. Edman degradation will:
()	(A) determine the C-terminal amino acid by using a carboxypeptidase.
		(B) cleave the protein into a multitude of smaller peptides.
		(C) compare overlapping sets of peptide fragments.
		(D) determine the N-terminal amino acid.
()	6. The uncommon amino acid selenocysteine has an R group with the
	,	structure -CH ₂ -SeH (pKa~5). In an aqueous solution, pH=7.0, selenocysteine would:

第 2 頁,共 10 頁

		(A) be a fully ionized zwitterions with no net charge.
		(B) be found in proteins as D-selenocysteine.
		(C) never be found in a protein.
		(D) be nonionic.
		(E) not be optically active.
()	7. By adding SDS during the electrophoresis of proteins, it is possible to:
		(A) determine a protein's isoelectric point.
		(B) determine an enzyme's specific activity.
		(C) determine the amino acid composition of the protein.
		(D) preserve a protein's native structure and biological activity.
		(E) separate proteins exclusively on the basis of molecular weight.
()	8. Which of the following proteins would show up as the band at the bottom of an SDS
		polyacrylamide gel after electrophoresis?
		(A) Ribonuclease A, 14 kDa
		(B) Myoglobin, 17 kDa
		(C) DNase I, 31 kDa
		(D) Haptoglobin, 45 kDa
		(E) Serum albumin, 67 kDa
()	9. Which of the following is <i>not</i> commonly used to assist protein folding?
		(A) Chaperones
		(B) Disulfide isomerase
		(C) Heat shock proteins
		(D) Ubiquitin
		(E) Peptidyl-prolyl cis-trans isomerase
()	10. The Protein Data Bank (PDB) is a database that primarily contains information
		about:
		(A) gene sequences
		(B) enzyme specificity
		(C) protein structure
		(D) protein function
		(E) protein-protein interaction
()	11. The term "proteome" has been used to describe:
		(A) regions (domains) within proteins.
		(B) regularities in protein structures.
		(C) the complement of proteins encoded by an organism's DNA.
		(D) the structure of a protein-synthesizing ribosome.
		(E) the tertiary structure of a protein.

第 3 頁,共 10 頁

()	12. In the binding of oxygen to myoglobin and hemoglobin, the relationship between the concentration of oxygen and the fraction of binding sites occupied can best be described as:
		(A) both are linear with a negative slope
		(B) both are linear with a positive slope
		(C) hyperbolic for myoglobin; sigmoidal for hemoglobin
		(D) sigmoidal for myoglobin; hyperbolic for hemoglobin
		(E) none of the above
()	13. Which of the following can not be used to determine molecular weight for proteins?
***		(A) SDS-PAGE
		(B) Gel filtration
		(C) Southern blotting
		(D) Mass spectrometry
		(E) Bioinformatic tools
()	14. The following methods are now frequently used for determination of three-
		dimensional structures of proteins, not including:
		(A) cryo-electron microscopy
		(B) circular dichroism
		(C) nuclear magnetic resonance (NMR)
		(D) X-ray diffraction crystallography
		(E) small-angle X-ray scattering
()	15. In the binding of oxygen to myoglobin and hemoglobin, the relationship between
		the concentration of oxygen and the fraction of binding sites occupied can best be
		described as:
		(A) both are linear with a negative slope
		(B) both are linear with a positive slope
		(C) hyperbolic for myoglobin; sigmoidal for hemoglobin
		(D) sigmoidal for myoglobin; hyperbolic for hemoglobin
		(E) none of the above
()	16. Coenzymes NAD ⁺ /NADH are commonly used as coupling reactions for enzyme
		activity assay. Which of the following best describes the measurement of NADH
		production?
		(A) $A_{340 \text{ nm}}$ increases
		(B) A _{340 nm} decreases
		(C) A _{595 nm} increases
		(D) A _{595 nm} decreases
		121 F 100000 1 1 1

第 4 頁,共 10 頁

		(E) A _{280 nm} increases
()	17. In the Lineweaver-Burk plot for an enzyme-catalyzed reaction, the presence of a
		competitive inhibitor will alter the
		(A) $V_{\rm max}$
		(B) intercept on the $1/V$ axis.
		(C) intercept on the 1/[S] axis.
		(D) curvature of the plot.
		(E) none of the above
()	18. Which of these statements about enzyme-catalyzed reactions is <i>false</i> ?
	,	(A) At saturating levels of substrate, the rate of an enzyme-catalyzed reaction is proportional to the enzyme concentration.
		(B) If enough substrate is added, the normal Vmax of a reaction can be attained even in the presence of a competitive inhibitor
		(C) The rate of a reaction decreases steadily with time as substrate is depleted.
		(D) The activation energy for the catalyzed reaction is the same as for the
		uncatalyzed reaction, but the equilibrium constant is more favorable in the
		enzyme-catalyzed reaction.
		(E) The Michaelis-Menten constant K m equals the [S] at which $V=1/2$ V_{max} .
()	19. An enzyme able to remove a phosphate group from its substrate is called:
		(A) kinase
		(B) phosphodiesterase
		(C) phosphatase
		(D) caspase
		(E) lipase.
()	20. Which of the following can be used as powerful inhibitors for an
		enzyme-catalyzed reaction, thus being promising candidates for novel drug design?
		(A) substrates
		(B) transition-state analogs
		(C) products
		(D) reaction intermediates
		(E) none of the above
()	21. Where does translation occur?
		(A) nucleus
		(B) cytosol
		(C) lysosome
		(D) all above
		(E) none of the above

第 5 頁,共 10 頁

		<u> </u>
()	22. The simplest aldotriose is:
		(A) glyceraldehyde
		(B) dihydroxyacetone
		(C) acetone
		(D) threose
		(E) fructose
()	23. Sucrose is composed of the following simple sugars:
		(A) fructose only
		(B) glucose only
		(C) galactose and glucose
		(D) glucose and fructose
		(E) galactose and fructose
()	24. Which of the following molecules is a disaccharide?
		(A) glucose
		(B) galactose
		(C) fructose
		(D) lactose
		(E) all above
()	25. Nucleotides are linked by
		(A) peptide bond
		(B) hydrogen bond
		(C) phosphodiester bond
		(D) disulfide bond.
		(E) none of the above
()	26. Which of the following terms describes an enzyme that makes glucose to
		glucose-6-phosphate?
		(A) phosphatase
		(B) dehydrogenase
		(C) isomerase
		(D) kinase
		(D) all above.
()	27. Which one cut mRNA?
		(A) ribonuclease
		(B) endonuclease
		(C) exonuclease
		(D) all above.
		(E) none of the above

第 6 頁,共 10 頁

		土物心学方材
()	28. Which one is <i>not</i> lipid-soluble vitamin:
		(A) vitamin A
		(B) vitamin C
		(C) vitamin D
		(D) vitamin E
		(E) vitamin K.
()	29. Gluconeogenesis is the synthesis of:
		(A) fatty acids from glucose
		(B) glucose from non-carbohydrate precursors
		(C) glycogen from glucose
		(D) pyruvate from glucose
		(E) none of the above
()	30. In the cellular signaling, which one is the second messenger:
		(A) ATP
		(B) ADP
		(C) cAMP
		(D) GTP
		(E) NADPH.
()	31. The following sugar is also called blood sugar:
		(A) sucrose
		(B) glucose
		(C) fructose
		(D) maltose
		(E) none of the above
()	32. Which of the following molecules have the highest degree of $[1\rightarrow 6]$ branching
		linkages:
		(A) starch
		(B) glycogen
		(C) amylopectin
		(D) amylase
		(E) none of the above
()	33. The DNA is <i>not</i> composed of:
		(A) adenine
		(B) uracil
		(C) guanine
		(D) cytosine
		(E) thymine.

物化學考科 第7頁,共10頁

		工10/10子7/17
()	34. The major difference between DNA and RNA is the sugar, with what ribose in DNA:
		(A) 1-deoxyribose
		(B) 2-deoxyribose
		(C) 3-deoxyribose
		(D) 4-deoxyribose
		(E) 5-deoxyribose.
()	35. The components of lipoproteins such as LDL and HDL which makes them water
	,	soluble are:
		(A) proteins
		(B) phospholipids
		(C) unesterified cholesterol
		(D) proteins and phospholipids
		(E) All of the above.
()	36. The first committed precursor in the pathway for the synthesis of cholesterol is:
		(A) Isoprene
		(B) Lanosterol
		(C) Mevalonic acid
		(D) Squalene
		(E) None of these is correct.
()	37. Which of the following enzyme types is involved in both fatty acid synthesis and
		breakdown?
		(A) Carboxylase.
		(B) Transferase.
		(C) Synthase.
		(D) Both carboxylase and synthase.
		(E) All three of these enzymes are used in fatty acid synthesis.
()	38. Compared to β-oxidation, fatty acid synthesis requires this extra vitamin or
		cofactor.
		(A) Biotin
		(B) Riboflavin
		(C) Niacin
		(D) Pantothenic acid
		(E) All of these are used in both pathways.
()	39. How many NADPH are oxidized in the synthesis of palmitoyl-CoA from eight
		molecules of acetyl-CoA?
		(A) 1

第 8 頁,共 10 頁

		(B) 7
		(C) 8
		(D) 14
		(E) 16
,)	40. Where in the cell does fatty acid synthesis occur?
		(A) Cytoplasm.
		(B) Outer mitochondrial membrane.
		(C) Mitochondrial intermembrane space.
		(D) Inner mitochondrial membrane.
		(E) Mitochondrial matrix.
()	41. Which are the three most common ketone bodies?
		(A) Acetone, formaldehyde, acetoacetate.
		(B) Acetone, butyric acid and oxaloacetate.
		(C) Acetone, β-hydroxybutyrate and acetoacetate.
		(D) Acetone, β-hydroxybutyrate and oxaloacetate.
		(E) Acetocetate, β-hydroxybutyrate and oxaloacetate.
()	42. The reactions involved in β-oxidation of fatty acids include the following:
		1. Cleavage of acetyl-CoA from the fatty acid.
		2. Hydration of a double bond.
		3. Formation of a C-C double bond.
		4. Oxidation of an alcohol.
		The correct order of these reactions is:
		$(A) 1 \to 2 \to 3 \to 4$
		$(B) 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$
		$(C) 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$
		$(D) 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$
		$(E) 1 \to 4 \to 3 \to 2$
()	43. How many NAD+ are reduced in the degradation of palmitoyl-CoA to form
		eight molecules of acetyl-CoA?
		(A) 1
		(B) 7
		(C) 8
		(D) 14
		(E) 16
()	44. Which of the following is <i>not</i> an advantage of fatty acids as a form of energy
		storage?
		(A) Fatty acids contain more highly reduced carbons than carbohydrates.

生物化學考科

(B) Their hydrophobic nature allows close packing in adipose tissue.

第 9 頁,共 10 頁

		(C) Storage of fats in muscle tissue makes it readily available for use during activity.
		(D) Fats contain more energy per gram than sugars.
		(E) They do not require water for storage.
()	45. How many ATP are required for the production of two ammonia molecules (NH3)
		from one nitrogen molecule (N2)?
		(A) 2 ATP.
		(B) 4 ATP.
		(C) 8 ATP.
		(D) 16 ATP.
		(E) 32 ATP.
()	46. Which of the following amino acids is <i>not</i> glucogenic?
		(A) Glycine.
		(B) Alanine.
		(C) Aspartic Acid.
		(D) Leucine.
		(E) All of these amino acids are glucogenic.
()	47. Humans produce these as the major nitrogen waste products.
		(A) Ammonia.
		(B) Urea.
		(C) Uric Acid.
		(D) Both Urea and Uric Acid.
		(E) All three of these are used to dispose of nitrogen wastes by humans.
()	48. Which of the following is <i>not</i> associated with pyrimidine synthesis?
		(A) Synthesis of the base while ribose is attached.
		(B) Stimulation of synthesis by purines.
		(C) An orotic acid intermediate.
		(D) Inhibition by pyrimidines.
		(E) All of these are features of pyrimidine synthesis.
()	49. By a simple transamination reaction, intermediates in glycolysis or the Kreb's
		Cycle can be converted in one step to all of these amino acids, except:
		(A) Alanine.
		(B) Aspartic Acid
		(C) Glutamic Acid.
		(D) Serine.
		(E) All of these amino acids are only one step away from the major metabolic

背面尚有試題

pathways.

第 10 頁,共 10 頁

- () 50. The two nitrogens in urea arise directly from:
 - (A) Ammonia and aspartic acid.
 - (B) Carbamoyl phosphate and aspartic acid.
 - (C) Carbamoyl phosphate and glutamic acid.
 - (D) Ammonia and glutamic acid.
 - (E) Carbamoyl phosphate and glutamine.