第1頁,共7頁

#### 《生理考科》

| 選: | 澤題 | :    | (20%  | )         |
|----|----|------|-------|-----------|
|    | 選  | ・選擇題 | ・選擇題: | ·選擇題:(20% |

- 1. ( ) Which structure is composed of protein filaments and is located in the center of the thick filaments.
  - a) z line. b) titin. c) m line. d) actin.
- 2. ( ) Clotting is blocked by
  - a) vitamin K agonists. b) calcium. c) heparin antagonists. d) coumarin agonists.
- 3. ( ) The major plasma protein is
  - a) alpha globulin. b) beta globulin. c) fibrinogen. d) albumin.
- 4. ( ) An increase in muscle tension due to a gradual increase in stimulus intensity is termed
  - a) tetanus. b) tetany. c) treppe. d) motor unit summation.
- 5. ( ) Growth would be inhibited by
  - a) increasing prolactin secretion. b) increasing somatostatin secretion.
  - c) increasing somatomedin secretion. d) increasing thyroid hormone secretion.
- 6. ( ) Blood vessel diameter is regulated by all of the following except
  - a) platelet-derived growth factor. b) bradykinin. c) endothelin. d) nitric oxide.
- 7. ( ) The highest oxygen affinity is demonstrated by
  - a) hemoglobin A. b) hemoglobin F. c) myoglobin. d) hemoglobin S.
- 8. ( ) Urine is transported to the urinary bladder by the
  - a) ureter. b) urethra. c) nephron. d) renal pelvis.
- 9. ( ) If ~10 grams of bile salts enter the enterohepatic circulation per day, approximately how many grams will be excreted per day?
  - a) 10. b) 8. c) 4. d) 0.5.
- 10. ( ) The primary intracellular cation is
  - a) Ca<sup>2+</sup>. b) K<sup>+</sup>. c) Mg<sup>2+</sup>. d) Na<sup>+</sup>.
- 二、非選擇題:(30%)
- 1. 何謂  $\beta$ -agonist, 並說明人類食用含  $\beta$ -agonist 相關肉品可能產生之副作用?15%
- 2. 請翻譯以下摘自數種期刊主題的英文意涵:15%
- Title1 Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis

  Domestic Animal Endocrinology 26 (2004) 111–126

第2頁,共7頁

- Title2 Effect of *Bifidobacterium bifidum* Fermented Milk on *Helicobacter pylori* and Serum Pepsinogen Levels in Humans
  - J. Dairy Sci. 90 (2007): 2630-2640
- Title3 Estrogen replacement therapy decreases platelet-activating factor-acetylhydrolase activity in post-menopausal women

  Maturitas 31 (1999) 249–253

第3頁,共7頁

#### 《生化考科》

- 1. Since DNA synthesis is bidirectional from the origin, the number of new strands are being made simultaneously in *E. coli* is:
  - (A) one
  - (B) two
  - (C) three
  - (D) four
  - (E) the answer cannot be determined from this information.
- 2. When the synthesis of new DNA is directed by an original template DNA molecule
  - (A) the DNA produced has two newly formed strands (no change in the original DNA)
  - (B) two DNA molecules are formed, each with one new strand and one strand from the original DNA
  - (C) there is random arrangement of newly formed and original DNA on the two strands of the DNA produced
  - (D) no information is available on this subject
- 3. The primer for *in vivo* DNA replication is:
  - (A) The 3' hydroxyl of the preceding Okazaki fragment.
  - (B) A short piece of RNA.
  - (C) A nick made in the DNA template.
  - (D) A primer is not always required for DNA replication.
  - (E) All of these are true.
- 4. Which of the following is not a function of DNA polymerase I from E. coli?
  - (A) adding nucleotides to the primer strand
  - (B)  $3' \rightarrow 5'$  exonuclease activity
  - (C)  $5' \rightarrow 3'$  exonuclease activity
  - (D) proofreading
- 5. E. coli replication on the lagging strand
  - (A) is carried out by DNA polymerase I
  - (B) is initially synthesized as Okazaki fragments
  - (C) is synthesized continuously
  - (D) has this DNA strand synthesized in a 3'-5' direction

**Exhibit 1A:** Consider the following diagrams showing a replication fork moving from left to right. The thick lines represent the template/parental strands. The 5' and 3' represent the ends of those template/parental strands.

第4頁,共7頁



- 6. **Refer to exhibit 1A:** Which diagram correctly depicts the orientation of the lagging and leading strands on the parentals?
  - (A) The top
  - (B) The bottom
  - (C) Neither is fully accurate.
  - (D) Either would be accurate dependent on the organism being studied.
- 7. Refer to exhibit 1A: Which Okazaki fragment was synthesized earliest?
  - (A) A
  - (B) B
  - (C) C
  - (D) D
- 8. Which of the following activities does E. coli DNA polymerase III lack?
  - (A) 5'—>3' polymerase
  - (B)  $5' \rightarrow 3'$  exonuclease
  - (C) 3'—>5' exonuclease
  - (D) E. coli DNA polymerase III has ALL of the above activities.
- 9. Single strand binding proteins are important for this activity:
  - (A) Prevent single-stranded DNA from rewinding.
  - (B) Protect single-stranded DNA from enzymatic degradation.
  - (C) Prevent double helical DNA from unwinding.
  - (D) Prevent double helical DNA from becoming a triple helix.

第5頁,共7頁

- (E) Prevent single-stranded DNA from rewinding and protect it from degradation.
- 10. Ultra-violet light principally causes which of the following damages to DNA?
  - (A) mismatches between stands
  - (B) breaks in the phosphodiester backbone of the DNA strand
  - (C) thymine dimerization
  - (D) methylation of specific bases
- 11. Replication of eukaryotic DNA
  - (A) must occur faster than replication of prokaryotic DNA
  - (B) must be controlled to coordinate with the cell cycle
  - (C) takes place during mitosis
  - (D) takes place twice during each cell cycle
- 12. Chain termination occurs, in vivo, when:
  - (A) RNA Pol gets to the end of the DNA.
  - (B) The factor called rho  $(\rho)$  binds to the DNA.
  - (C) A hairpin loop forms in the template.
  - (D) Either a hairpin loop forms or rho is involved.
  - (E) All of these.
- 13. Which of the following correctly describes a difference between RNA & DNA polymerases?
  - (A) RNA polymerases usually do not need a template, while DNA polymerases do.
  - (B) DNA polymerases usually require a primer (i.e., they can only continue a strand, not start one), while most RNA polymerases do not.
  - (C) RNA polymerases usually synthesize introns, while DNA polymerases synthesize cistrons.
  - (D) RNA polymerases polymerize 5' —> 3', while DNA polymerases polymerize 3' —> 5'.
- 14. The promoter site is
  - (A) the start site for transcription in DNA
  - (B) the binding site for regulatory proteins that stimulate transcription
  - (C) the general region of DNA downstream from the start site
  - (D) the site on DNA at which RNA polymerase binds to initiate transcription
- 15. Which of the conditions would result in the **greatest** amount of transcription of the *lac* operon?

|     | [glucose] | [lactose] |
|-----|-----------|-----------|
| (A) | high      | high      |
| (B) | low       | low       |
| (C) | high      | low       |

第6頁,共7頁

|              |           |                            |                 | 土埋架土化专科                           | 免 0 貝 , 六 / 身              |  |  |  |  |
|--------------|-----------|----------------------------|-----------------|-----------------------------------|----------------------------|--|--|--|--|
|              | (D)       | low                        | high            |                                   |                            |  |  |  |  |
| 16. ′        | The follo | wing are a                 | ll key steps in | activation of mRNA synthesis      | in eukaryotes, except:     |  |  |  |  |
|              | (A)       | Binding of TBP to the DNA. |                 |                                   |                            |  |  |  |  |
|              | (B)       | Binding                    | of other trans  | cription factors.                 |                            |  |  |  |  |
|              | (C)       | Binding of RNA Pol I.      |                 |                                   |                            |  |  |  |  |
|              | (D)       | Phospho                    | rylation of th  | e RNA Pol.                        |                            |  |  |  |  |
|              | (E)       | All of the                 | ese are neces   | sary to initiate RNA synthesis in | eukaryotes.                |  |  |  |  |
| 17.          | Which of  | the follow                 | ring is not a s | tructural motif encountered in D  | NA-binding proteins?       |  |  |  |  |
|              | (A)       | helix-tur                  | n-helix         |                                   |                            |  |  |  |  |
|              | (B)       | leucine z                  | ipper           |                                   |                            |  |  |  |  |
|              | (C)       | zinc fing                  | er              |                                   |                            |  |  |  |  |
|              | (D)       | β barrel                   |                 |                                   |                            |  |  |  |  |
| 18.]         | Ribozym   | es, the cata               | lytic activity  | of RNA, were first discovered a   | s part of the snRNA group. |  |  |  |  |
|              | (A)       | True                       |                 |                                   |                            |  |  |  |  |
|              | (B)       | False                      |                 |                                   |                            |  |  |  |  |
| 19. ]        | lnosine o | r hypoxant                 | hine can wob    | ble with all the following bases, | except:                    |  |  |  |  |
|              | (A)       | A                          |                 |                                   |                            |  |  |  |  |
|              | (B)       | C                          |                 |                                   |                            |  |  |  |  |
|              | (C)       | T                          |                 |                                   |                            |  |  |  |  |
|              | (D)       | U                          |                 |                                   |                            |  |  |  |  |
|              | (E)       | Inosine o                  | an wobble w     | ith all of these bases.           |                            |  |  |  |  |
| 20. <b>'</b> | Which an  | nino acids                 | have unique o   | codons?                           |                            |  |  |  |  |
|              | (A)       | gly                        |                 |                                   |                            |  |  |  |  |
|              | (B)       | met                        |                 |                                   |                            |  |  |  |  |
|              | (C)       | tyr                        |                 |                                   |                            |  |  |  |  |
|              | (D)       | stop                       |                 |                                   |                            |  |  |  |  |
| 21. /        | 4 tRNA    | was determ                 | ined to have    | the following anticodon sequen    | ce:                        |  |  |  |  |
| 3            | 3'-GAI-5' | (I represen                | nts the base h  | ypoxanthine). Indicate which of   | the following codons can   |  |  |  |  |
| f            | form base | e pairs with               | this anticodo   | on                                |                            |  |  |  |  |
|              | (A)       | 5'-CUA-                    | 3'              |                                   |                            |  |  |  |  |
|              | (B)       | 5'-CUC-:                   | 3'              |                                   |                            |  |  |  |  |
|              | (C)       | 5'-CUU-                    | 3'              |                                   |                            |  |  |  |  |
|              | (D)       | all of the                 | ahove           |                                   |                            |  |  |  |  |

22. A Shine-Dalgarno Sequence is a

# 九十七學年度研究所碩士班考試入學 動物科技學系碩士班

### 生理與生化考科

第7頁,共7頁

- sequence of nucleotides in the DNA that interacts with the  $\sigma$ -subunit of RNA (A) polymerase to begin transcription.
- (B) sequence of nucleotides in an mRNA that interacts with the small subunit of a ribosome to begin translation.
- sequence of nucleotides in the DNA that interacts with ρ-protein to terminate (C) transcription.
- sequence of nucleotides in an mRNA that functions to terminate translation. (D)
- 23. The ribosome is actually a ribozyme.
  - (A) True
  - (B) False
- 24. The final form of mRNA in eukaryotes has all these features, except:
  - There will be a special nucleotide cap on the 5' end of the mRNA. (A)
  - There is usually a poly A tail on the 3' end of the mRNA. (B)
  - The mature, active mRNA contains introns. (C)
  - (D) Only a single protein is made from any mature mRNA molecule.
- 25. All of these are true. The protein which marks proteins for degradation is called:
  - (A) Chaperonin
  - Ubiquitin (B)
  - (C) Proteasomin
  - (D) Apoptosin
  - None of these names is correct. (E)