# 國 立 宜 蘭 大 學

## 101學年度研究所碩士班考試入學

# 生物化學試題

(生物技術與動物科學系生物技術碩士班)

## 准考證號碼:

## 《作答注意事項》

- 1. 請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2. 考試時間: 100 分鐘。
- 3. 本試卷共有50 題單選題, 一題2分, 共計100分。
- 4. 請將答案寫在答案卷上。
- 5. 考試中禁止使用大哥大或其他通信設備。
- 6. 考試後,請將試題卷及答案卷一併繳交。
- 7. 本試卷採雙面影印,請勿漏答。
- 8. 應試時不得使用電子計算機。

第1頁,共6頁

#### 單選題(共50題,每題2分)

- 1. The three-dimensional structure of protein is formed and maintained primarily through noncovalent interactions. Which one of the following is *NOT* considered a noncovalent interaction?
  - (A) disulfide bonds (B) hydrogen bonds (C) hydrophobic interactions
  - (D) ionic interactions (E) van der Waals interactions
- 2. The pH of a sample of blood is 7.4, while gastric juice is pH 1.4. The blood sample has:
  - (A) 0.189 times the [H<sup>+</sup>] as the gastric juice.
  - (B) 5.29 times lower [H<sup>+</sup>] than the gastric juice.
  - (C) 6 times lower [H<sup>+</sup>] than the gastric juice.
  - (D) 6,000 times lower [H<sup>+</sup>] than the gastric juice.
  - (E) a million times lower [H<sup>+</sup>] than the gastric juice.
- 3. Water derives all its special properties from its:
  - (A) cohesiveness and adhesiveness (B) high boiling point and melting point
  - (C) small degree of ionization (D) polarity and hydrogen-bonding capacity
  - (E) high dielectric constant
- 4. The uncommon amino acid selenocysteine has an R group with the structure -CH<sub>2</sub>-SeH (pKa~5). In an aqueous solution, pH=7.0, selenocysteine would:
  - (A) be a fully ionized zwitterions with no net charge.
  - (B) be found in proteins as D-selenocysteine.
  - (C) never be found in a protein.
  - (D) be nonionic.
  - (E) not be optically active.
- 5. One method used to prevent disulfide bond interference with protein sequencing procedure is:
  - (A) cleaving proteins with proteases that specifically recognize disulfide bonds.
  - (B) protecting the disulfide bridge against spontaneous reduction to sulfhydryl groups.
  - (C) reducing disulfide bridges and preventing their re-formation by further modifying the -SH groups.
  - (D) removing cystines from protein sequences by proteolytic cleavage.
  - (E) sequencing proteins that do not contain cysteinyl residues.
- 6. The term "proteome" has been used to describe:
  - (A) regions (domains) within proteins.
  - (B) regularities in protein structures.
  - (C) the complement of proteins encoded by an organism's DNA.
  - (D) the structure of a protein-synthesizing ribosome.
  - (E) the tertiary structure of a protein.

第2頁,共6頁

- 7. By adding SDS during the electrophoresis of proteins, it is possible to:
  - (A) determine a protein's isoelectric point.
  - (B) determine an enzyme's specific activity.
  - (C) determine the amino acid composition of the protein.
  - (D) preserve a protein's native structure and biological activity.
  - (E) separate proteins exclusively on the basis of molecular weight.
- 8. Determining the precise spacing of atoms within a large protein is possible only through the use of:
  - (A) electron microscopy. (B) light microscopy. (C) X-ray diffraction.
  - (D) molecular model building. (E) Ramachandran plots.
- 9. Which of the following is not known to be involved in the process of assisted folding of proteins?
  - (A) Chaperonins (B) Disulfide interchange (C) Heat shock proteins
  - (D) Peptide bond hydrolysis (E) Peptide bond isomerization
- 10. In hemoglobin, the transition from T state to R state (low to high affinity) is triggered by:
  - (A) Fe<sup>2+</sup> binding (B) heme binding (C) oxygen binding (D) subunit association
  - (E) subunit dissociation
- 11. Which of these statements about enzyme-catalyzed reactions is false?
  - (A) At saturating levels of substrate, the rate of an enzyme-catalyzed reaction is proportional to the enzyme concentration.
  - (B) If enough substrate is added, the normal  $V_{\text{max}}$  of a reaction can be attained even in the presence of a competitive inhibitor.
  - (C) The rate of a reaction decreases steadily with time as substrate is depleted.
  - (D) The activation energy for the catalyzed reaction is the same as for the uncatalyzed reaction, but the equilibrium constant is more favorable in the enzyme-catalyzed reaction.
  - (E) The Michaelis-Menten constant  $K_{\rm m}$  equals the [S] at which  $V=1/2~V_{\rm max}$ .
- 12. In glycoproteins, the carbohydrate moiety is always attached through the amino acid residues:
  - (A) asparagine, serine, or threonine (B) aspartate, glutamate or threonine
  - (C) glutamine, lysine, or arginine (D) glycine, alanine, or aspartate
  - (E) tryptophan, phenylalanine, or tyrosine
- 13. A small molecule (generally under  $M_r$  5000) that can attach to larger molecules in order to elicit an immune response is called:
  - (A) antigen (B) allergen (C) hapten (D) isotope (E) epitope
- 14. The DNA is *NOT* composed of:
  - (A) adenine (B) uracil (C) guanine (D) cytosine (E) thymine.

15. The major difference between DNA and RNA is the sugar, with what ribose in DNA:

(A) 1-deoxyribose (B) 2-deoxyribose (C) 3-deoxyribose (D) 4-deoxyribose

第3頁,共6頁

|     | (E) 5-deoxyribose.                                                                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 16. | Which is the most common form of DNA under the conditions found in cells?                                            |
|     | (A) A-DNA (B) B-DNA (C) C-DNA (D) D-DNA (E) E-DNA.                                                                   |
| 17. | Which of the following is a disaccharide?                                                                            |
|     | (A) glucose (B) galactose (C) fructose (D) lactose (E) cellulose.                                                    |
| 18. | Disaccharide is composed of two monosaccharides by what kind of linkage:                                             |
|     | (A) phosphodiester bond (B) hydrogen bond (C) glycosidic bond                                                        |
|     | (D) peptide bond (E) ester bond.                                                                                     |
| 19. | Which of the following is a saturated fatty acid?                                                                    |
|     | (A) C18:0 (B) C18:1 (C) C18:2 (D) C18:3 (E) C20:4.                                                                   |
| 20. | Which of the following can <i>NOT</i> be found in the cell membrane of mammalian cells?                              |
|     | (A) protein (B) lipid (C) oligosaccharide (D) cholesterol (E) RNA.                                                   |
| 21. | Which of the following is <i>NOT</i> a lipid-soluble vitamin:                                                        |
|     | (A) vitamin A (B) vitamin C (C) vitamin D (D) vitamin E (E) vitamin K.                                               |
| 22. | An enzyme able to remove a phosphate group from its substrate is called:                                             |
|     | (A) kinase (B) phosphodiesterase (C) phosphatase (D) caspase (E) lipase.                                             |
| 23. | Phospholipase C catalyzes the hydrolysis of PIP <sub>2</sub> to inositol 1,4,5-triphosphate (IP <sub>3</sub> ) and a |
|     | diacylglycerol (DAG). IP <sub>3</sub> stimulates the release of Ca <sup>2+</sup> from:                               |
|     | (A) endoplasmic reticulum (B) mitochondria (C) lysosome (D) nucleus                                                  |
|     | (E) Golgi apparatus.                                                                                                 |
| 24. | Bruce A. Beutler and Jules A. Hoffmann won the Nobel Prize in Physiology or Medicine                                 |
|     | 2011 and their discoveries concerning the activation of innate immunity. Which receptor is                           |
|     | their major finding in the innate immunity:                                                                          |
|     | (A) insulin receptor (B) hormone receptor (C) toll-like receptor (D) cytokine receptor                               |
|     | (E) G-protein coupled receptor.                                                                                      |
| 25. | In the cellular signaling, which of the following serves as the second messenger:                                    |
|     | (A) ATP (B) ADP (C) cAMP (D) GTP (E) NADPH.                                                                          |
| 26. | Mirror image stereoisomers are called:                                                                               |
|     | (A) anomers. (B) diastereomers. (C) enantiomers. (D) epimers. (E) monomers.                                          |
| 27. | In a Fischer projection, which chiral carbon determines whether the sugar is the D- or the                           |
|     | L-isomer?                                                                                                            |
|     | (A) highest numbered carbon atom (B) lowest numbered asymmetric carbon atom                                          |
|     | (C) lowest numbered carbon atom (D) highest numbered asymmetric carbon atom                                          |
|     | (E) lowest numbered oxygen atom                                                                                      |
|     |                                                                                                                      |

第4頁,共6頁

| 28. Which of the following is <i>NOT</i> an end product of glucose metabolism via either aerobic or           |
|---------------------------------------------------------------------------------------------------------------|
| anaerobic means?                                                                                              |
| (A) ethanol (B) carbon dioxide (C) lactate (D) fructose                                                       |
| (E) all of these are end products of glucose metabolism                                                       |
| 29. Which of the following enzymes of glycolysis is <i>NOT</i> involved in regulation of the pathway?         |
| (A) Hexokinase (B) Phosphofructokinase (C) Aldolase (D) Pyruvate kinase                                       |
| (E) All of these proteins regulate glycolysis.                                                                |
| 30. Methanol is extremely toxic, but not directly. In the body, it is converted into formaldehyde;            |
| that's what's actually the poison. What kind of enzyme catalyzes this conversion?                             |
| (A) a kinase (B) a dehydrogenase (C) an isomerase (D) a mutase (E) a protease                                 |
| 31. The glyoxylate pathway bypasses part of the citric acid cycle by converting isocitrate to glyoxylate and: |
| (A) α-ketoglutarate. (B) fumarate. (C) succinyl-CoA. (D) succinate. (E) pyruvate.                             |
| 32. The metabolically activated form of a fatty acid is:                                                      |
| (A) an ester. (B) a Schiff base. (C) a thioester. (D) a phosphate ester.                                      |
| (E) a phosphoanhydride.                                                                                       |
| 33. Where in the cell does β-oxidation occur?                                                                 |
| (A) Cytoplasm. (B) Outer mitochondrial membrane.                                                              |
| (C) Mitochondrial intermembrane space. (D) Inner mitochondrial membrane.                                      |
| (E) Mitochondrial matrix.                                                                                     |
| 34. A key intermediate in the formation of "ketone bodies" is:                                                |
| (A) succinyl-CoA. (B) acetoacetyl-CoA. (C) malonyl-CoA. (D) propionyl-CoA.                                    |
| (E) methyl malonyl-CoA.                                                                                       |
| 35. A metabolic intermediate that is <i>NOT</i> a precursor for an amino acid family is:                      |
| (A) α-ketoglutarate. (B) pyruvate. (C) glyceraldehyde-3-phosphate.                                            |
| (D) oxaloacetate. (E) propionate.                                                                             |
| 36. Which of the following is <i>NOT</i> a stop codon?                                                        |
| (A) UAA (B) UGA (C) UAG (D) UGG (E) all of the above.                                                         |
| 37. In eukaryotes, the most common mechanism for targeting protein for destruction in a                       |
| proteasome is by: (A) ubiquitinylation. (B) glycosylation. (C) phosphorylation.                               |
| (D) acetylation. (E) methylation.                                                                             |
| 38. Which of the following is <i>NOT</i> part of RNA processing in eukaryotes?                                |
| (A) addition of 5' cap (B) addition of a poly A tail (C) reverse transcription                                |
| (D) removal of introns (E) joining of exons.                                                                  |
| 39. The specific enzyme that produce DNA pieces of manageable size is called:                                 |
| (A) Taq DNA polymerase (B) restriction endonuclease (C) DNA ligase                                            |
| (D) Helicase (E) Topoisomerase                                                                                |
|                                                                                                               |

第5頁,共6頁

- 40. Which of the following technique is most widely used for separating DNA or protein by their size and charge?
  - (A) Cloning
  - (B) Transformation
  - (C) PCR
  - (D) Gel electrophoresis
  - (E) Gel filtration chromatography
- 41. The primer for in vivo DNA replication is:
  - (A) The 3' hydroxyl of the preceding Okazaki fragment.
  - (B) A short piece of RNA.
  - (C) A nick made in the DNA template.
  - (D) A primer is not always required for DNA replication.
  - (E) All of the above are true.
- 42. Which of the following activities does E. coli DNA polymerase III lack?
  - (A)  $5' \rightarrow 3'$  exonuclease activity
  - (B)  $3' \rightarrow 5'$  exonuclease activity
  - (C)  $5' \rightarrow 3'$  polymerase activity
  - (D) All of the above
  - (E) None of the above
- 43. In bacteria the elongation stage of protein synthesis does *NOT* involve:
  - (A) aminoacyl-tRNAs.
  - (B) EF-Tu.
  - (C) GTP.
  - (D) IF-2.
  - (E) peptidyl transferase.
- 44. Semiconservative replication of DNA was established experimentally by:
  - (A) gel electrophoresis
  - (B) ultraviolet spectroscopy
  - (C) column chromatography
  - (D) flow cytometry
  - (E) density-gradient centrifugation
- 45. The sigma factor of E. coli RNA polymerase:
  - (A) associates with the promoter before binding to core enzyme.
  - (B) combines with the core enzyme to confer specific binding to a promoter.
  - (C) is inseparable from the core enzyme.
  - (D) is required for termination of an RNA chain.
  - (E) will catalyze synthesis of RNA from both DNA template strands in the absence of the

第6頁,共6頁

core enzyme.

- 46. Aptamers are:
  - (A) double-stranded RNA products of nuclease action on hairpin RNAs.
  - (B) repeat sequence elements at the ends of transposons.
  - (C) small RNA molecules selected for tight binding to specific molecular targets.
  - (D) the RNA primers required for retroviral replication.
  - (E) the short tandem repeat units found in telomeres.
- 47. Which of the following can NOT be used for measuring molecular weight of proteins?
  - (A) SDS-PAGE
  - (B) Gel filtration
  - (C) Mass spectrometry
  - (D) Northern blotting
  - (E) None of the above
- 48. Which of the following is NOT a major technique applied in proteomic studies?
  - (A) Two-dimensional gel electrophoresis
  - (B) Mass spectrometry
  - (C) Bioinformatics
  - (D) DNA microarray
  - (E) None of the above
- 49. Ni-NTA is a metal chelate affinity chromatography for purification of proteins with:
  - (A) His<sub>6</sub>-tags
  - (B) Flag-tags
  - (C) HA-tags
  - (D) GST-tags
  - (E) All of the above
- 50. Which of the following methods can NOT be used for analyzing protein-protein interactions?
  - (A) Yeast two hybrid
  - (B) Ultrafiltration
  - (C) Phage display
  - (D) Co-immunoprecipitation
  - (E) None of the above