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摘要 

於本論文中，後向特徵值法將被推導並運用於快速求解隔熱壁之溫度分佈。其中安

置於內層壁的薄片金屬將作為熱通量的照射面，而其他熱絕緣的材料則依序緊密地排列

成多層壁;至於各層接觸面間所設定之獨立坐標系統則用來建構多層壁熱傳之特徵方程

式。依據熱連續及熱通量孚恆的原理，相關特徵參數值將靈活地給定;亦即內部各層之特

徵參數值柔性地設為π，而滿足邊界條件之非線性特徵參數則歸結於最內與最外層壁;經

後向遞迴程序計算後，非線性的特徵值即可順利地解出;而以往求解程過中產生的非線性

疊代困擾於此將可完全的排除。於流明強度 900~1250 lux 照射下，理論計算值解與實驗

結果呈現良好的一致性(其最大誤差不超過 15％) ;換句話說，以更快之計算速度而獲致整

體的熱行為模式於此將獲得印證。 
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Abstract 

In this study, a feasible backward-eigenvalue method is introduced to analyze the 

temperature distribution of heat-insulating multilayer. In which, a thin-metal sheet, mounted as 

an inner layer, is subjected to heat flux, and separable thermal insulating material ,in the 

multilayer, is then well compacted subsequently while independent coordinate specified on the 

each interface of slabs will be used to construct the governing eigen-equations of heat 

conduction for multilayers. Base on thermal continuity law including temperature as well as 

heat flux, each eigen-parameter accessed from the corresponding exterior slab might be 

feasibly set as π, and those at boundary surface could be left to be constrained by boundary 

conditions. Thus the difficulty encountered in previous method, arisen from iteratively solving 

nonlinear eigen- function for each slab, could be fully avoided by leaving these troubles on the 

first layer and which might be easily solved using backward – eigenvalues recurrence. 

Compared with analytic and experimental results accessed from the irradiation of illumination 

falling within 900~1250 lux, both are found to behave a good agreement and their maximum 

relative error will be less than 20% ,i.e., the faster calculating speed to approach overall 

thermal behaviour has been confirmed in this study. 
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1. Introduction 

To analytically study the heat-transient problem, individual eigenvalue determined from 

corresponding equation seems to be inevitable in advance. Indeed, the calculating procedure for 

nonlinear eigen-roots is so tedious that it usually makes the author hard to be accessed (James 

et al. 1990；Burniston and Sliewert, 1973). To improve above inadequacy, a numerical method 

computing these roots of transcendental equations were developed (Ozisik, 1979). Here the 

proposed analytic model provides a workable manner to carry out the eigen-calculation, but the 

time -saving, the solutions iteratively solved from nonlinear equation, seems to be not so 

notable. Recently, CFD commercial package (computational fluid design) , with its special 

advantage in quick simulation, has attracted public interest and widely used in massive 

calculation. While couple with numerical skill and finite element theory, 3-D partial equations 

of heat conduction & convective model could be discretized into a set of simultaneous 

algebraic equations which might be well formulated into a corresponding tridiagonal 

matrix ,i.e., the troubled eigenvalue problem could be escaped. Base on above benefit, Wang 

and Xu (Wang and Xu, 2006；Xu and Wang, 2008) constructed an analogues R-C thermal 

network to undergo an indoor -ventilation simulation with Genetic algorithm (GA). Due to the 

duplicated implicit operation for R-C thermal network could not be further compressed, thus 

much time to have results is still another problem. Besides, Himanshu (Dehra, 2009) utilized a 

source -matrices method to study the heat transport on photovoltaic solar wall. Although the 

computational time has been significantly shortened, such a manipulation is found to be only 

validated for steady consideration, and material specific heat comparable to capacitors in 

thermal network should be taken into account if transient heat is considered. To strengthen 

above performance in comprehensive calculation, Liu et al. (2011) established a modified 

star-type R-C thermal network for concrete core cooling design. Here additional simultaneous 

equations were also required to enclosure the analytic model and finer grids over the whole 

network, to toward exact solution, was then constructed by Kontoleon (Kontoleon, 2011). Even 

though such prearrangement, the calculated process to have simulated results still became dull 

and inefficient. Generalizing from previous study by means of computational technique, the 

trouble of determining nonlinear eigenvalue could be ignored. However, the accumulation of 

truncation errors, round off errors as well as time-consuming seems to be out-of-control and 

left to be desired. Indeed, most thermal model for multilayers in engineering application might 

be further simplified by way of scalar analysis. Such analytic method using backward- 

eigenvalues to speed up the results, a modified manner from Ho. et al. (2013) in 
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forward-formulation, has attracted our interest and become the main objective of this study. 

 

2. Analysis 

Prior to embark on analytic analysis, 1-D heat conduction model with composite medium 

composed by parallel layer of slabs is illustrated in Fig.1. Here, the left surface of thin-metal 

sheet, as the first slab, is subjected to a constant heat flux q and individual thermal insulated 

material is then specified in the following layers successively. During the whole experimental or 

analytic process, thermal continuity is assumed to prevail within the whole working region. 

 

Figure 1.  Geometric structure of composite layers for 1-D heat conduction 

 

2.1 Assumptions 

1. Thermal property of working material including density, thermal conductivity, specific heat 

as well as thermal diffusivity is considered to be constant& isotropic. 

2. Base on scalar analysis, heat will be primarily conducted in x-direction conduction while the 

thickness of slab compared to its length & width is smaller enough. Thus 1-D heat conduction 

model is adequate to meet the demand of simulation.                      

3. Contacted thermal resistance or thermal dissipation at the interface might be neglected by 

taking the closely compacted slabs into account. 

2.2 Governing equations 
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Coupling with above assumptions, a partial differentiation equation governing 1-D heat 

conduction is given in Eqs.(1). Here relevant boundary and initial conditions are enclosed in 

Eqs.(2)~Eqs.(4) and Eqs.(5) respectively. 
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for  i = 2~ N-1      ( 3 ) 
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                                       for  i=1~N  at                     ( 5 )                                   

 

Thermal property ki , αi, ,θi = Ti - T∞ and h individually indicates material heat conductivity, 

thermal diffusivity, temperature distribution of i-th layer and convective coefficient at right 

boundary surface. Symbol q designates the heat flux imposed at left surface and then xi is the 

coordinate measured from the interface of i-1 and i th layer. 

2.3 Analytic Solution 

Invoking separation method, analytic solution of Eqs.(1) could be sucessfully carried out 

in Eqs.(6) where steady temperature θo in Eqs.(7) easily estimated from anaoglous thermal 

network illustrated is given in Fig. 2. 
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  for i =2,n-1         ( 6 ) 

 

                    

                                θo = q*[Σli/ki+(1/h)]                       （7） 

 

Figure 2.  Sketch of thermal network for multi-layered conduction 

                       

Subjected to boundary conditions of Eqs.(2)~(4), Eqs.(8)~Eqs.(10) provide recurred 

relation of coefficients Ai and Bi . In which, the equation governing thermal continuity at the 

interface of 1-th and 2- th layer is yielded in Eqs.(10), and x=-1 at Eqs.(8) satisfies the adiabatic 

condition at right boundary surface as heat convective coefficient h is assigned to be zero. Base 

on above arrangement, a trial and error metod solving these nonliear eigen-equations becomes a 

really hard work to be accessed unless a firther simplification is under consideration. 

 

( 8 ) 

                   

                                      

 

( 9 ) 
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    (10) 

                             

To overcome above difficulty, a flexible eigenvalue method in backward manner is then 

developed ,that is, let each argument of cotangent function ,in Eqs.(9), be equal to π and a 

simplified form concerning the relation of Ai/Bi could be resulted in Eq.(11) using the 

regressive reccurence of Eqs.(8)~Eqs.(9). By way of the equivalence of Eqs.(10) and Eqs.(11) 

provided i is back numbered from N to 2, β1 could be succesfully generalized while a 

thin-metal sheet ,as the first slab, is taken into account. Thus nonliear troubles emergying at 

forgoing eigenvalue-problem might be fully escaped and simple relation of Ai and Bi as well as 

individual eigenvalue is explictly expressed in Eqs.(11)~Eqs.(12). 

.                                                                              

(11) 

 
where 

 

                                                                      (12) 

 

Before we complete the analytic solution, the determination of coefficients Ai and Bi is 

still required using Fourier’s expansion to meet initial condition in Eqs.(5) ,and resultant 

formula might be readily obtainable in Eqs.(13). 
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3. Results and discussion 

Unlike the feasible backward-eigenvalue method proposed in this study, the difficulty 

encountered in previous research, based on the orthogonally of nonlinear eigen-fuction to solve 

unknown coefficients Ai, and Bi, might be absent. Here the value of πrated to the argument of 

triangular functions ,in Eqs.(9), not only still holds periodic characteristic, but also makes 

individual eigen-value be easily predicted from the explicit relation of Ai, and Bi developed. 

That is quite different from implicit iteration needed in forgoing model. Furthermore, the value 

of ration x assigned in Eqs.(8) is fully dependent on the boundary condition specified at right 

wall i.e., x=-1 indicates the adiabatic environment or x=1 is given in full convection. That also 

provides special advantages to determine coefficients An & Bn for thermal insulation 

considered here ,and also makesβ1  determined becomes possible by the backward recurrence 

despite of the βn selected. 

Subsequently, our discussion will forward to compare the experimental and analytic 

results accessed. In Fig.3, both temperature distributions are found to be in close agreement 

under the experiment with multi- layers closely compacted by a thin stainless plate and thermal 

proof material. As the light flux 900 lux is illuminated at the surface of thin metal plate 

positioned as an inner layer, both analytic and experimental surficial temperature T1, measured 

at left boundary exposed to heat flux, are found to steadily grow up to 45
o
 C within the period 

of about 30 min and their maximum relative error of 12% could be under control. As to the 

surficial temperature of fiber T2 at right boundary ambient to environment, both exhibit an 

excellent consistence and nearly keep at 18
o
C. Thus the thermal insulation could be effectively 

performed by the usage of thermal proof fiber. Similar to above consistent trend, Fig.4 displays 

the temperature dissemination resulted from the stronger irradiation of 1250 lux. Here the time 

required for T1 quickly warmed up to 50 
o
C is only 7 min while T2 is then experienced at a 

smaller increase of 25 
o
C ~30 

o
C. And their relative errors are found to be less than 10% & 15 

% delivered at T1 & T2 respectively. Such the shorter time needed to approach the saturated 

state seems not so surprised due to the thermal energy will be believed to be quickly 

accumulated at the metal plate.  
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Figure 3.  Comparisons of analytic & experimental temperature history at T1 and T2 for 

double- layer of fe –fiber slabs irradiated by 900 lux 

 

 
 

Figure 4.  Comparisons of analytic & experimental temperature history at T1 and T2 for 

double layers of fe –fiber slabs irradiated by 1250 lux 

 

 So far our discussion has been focused on the working temperature varying with duration 

for different illumination on double layers, next our attention will turn to understand how the 

temperature profile changes by compacting a wooden plate additionally. Through it, both 

experimental and analytic outcome, illustrated in Fig.5, tell that about 10 min is required for T1 

to reach at saturated temperature 55 
o
C and which is slightly delay compared to 7 min measured 

from the case of double-layers. Also the temperature at outer surface adjacent to environment, 

T3, nearly keeps at about 22 
o
C closer to the ambient temperature 20 

o
C. That means the heat 

flow could be effectively retarded by the mid- layer of fiber, and added compacted wooden 

sheet seems to be unnecessary. That could be identified by the layout of Fig.5 where both 

analytic and experimental results for T1 is distributed in excellent agreement and about 20% 
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discrepancy ,however, appears at both distributions of T3. 

 

 

Figure 5.  Comparisons of analytic & experimental temperature history at T1, T2 and T3 for 

multi-layer of fe–fiber-wood irradiated by 1250 lux. 

 

4. Conclusion 

Summary from above discussion, the manipulation of flexible backward-eigenvalue, 

proposed in this article, has been proven to possess special advantage over traditional methods. 

Here analytic accuracy compatible to experimental results has been confirmed and calculating 

speed, base on each eigenvalue explicitly determined by backward recurrence, could be 

significantly promoted by setting eigen-argument to be π. Although the calculating rate is 

primarily dependent on the individual eigenvalue specified, the final solution will approach to 

be unique. By way of the innovative backward-manner introduced in this study, the tedious 

operating process using commercial package or numerical skill could be fully avoided, i.e., the 

time-saving ,without losing the global thermal behavior, benefited from backward- eigenvalue  

manner proposed could be identified. Thus further extending present technology to the future 

research on thermal transmission of 2-D or 3-D composite-wall might be more desired. 
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5. Nomenclature 

Ai   the coefficient of i-th layered eigen-cosin function  

AN  the coefficient of N-th layered eigen-cosin function 

Bi   the coefficient of i-th layered eigen-sin function 

BN  the coefficient of N-th layered eigen-sin function 

Ti   the temperature of i-th layer  [K] 

T∞  ambient temperature [K] 

h  convective coefficient [Wm-
2
K

-1
]  

ki   thermal conductivity of of i-th layer [Wm
-1

K
-1

] 

kN  thermal conductivity of of N-th layer [Wm
-1

K
-1

] 

ℓi  the thickness of i-th layer [m] 

ℓN  the thickness of N-th layer [m] 

q  incident energy density [W/m
2
] 

t  time duration [s] 

xi  the transversal coordinate of i-th layer [m] 

xN  the transversal coordinate of N-th layer [m] 

αi  thermal diffusivity of of i-th layer  [m
2
/s] 

βi  the eigenvalue of of i-th layer 

θi  Ti-T∞  i- th layered temperature relative to ambient [K] 

θN  TN-T∞  N- th layered temperature relative to ambient [K] 
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