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摘 要

在資訊或生物科技工程上，分類問題一直是一個重要的研究方向，更是資料探勘領域上一們基礎的研究。類神經模糊規則架構常被運用在分類

系統的研究上，本論文是以模糊量測（Fuzzy measures）為基礎，從資料中自動建立模糊規則庫及可調變的類神經結構並應用於分類系統上，並以範

例加以實驗測試以證明此演算法的正確性。

本文中所提出的方法是利用輸入所有的訓練資料，並記錄下各類別每一個輸入變數的最小和最大值來建立包圍類別區域的超立方體作為類神經

結構的第一層。接著測試這些超立方體之間重疊情形，我們分別定義了模糊量測、資訊提供度及資料分離度並建立一結構調變參數，用以判別此重

疊區域是否需要再被更細的分割，而分割後的模糊規則庫即成為類神經結構的第二層。 依此類推，可建立多迴圈的類神經模糊架構，直到結構調變

參數太小。此方法可以合理的使用訓練資料以建立有效的分類器，並可依照資料的不同來簡化計算的複雜度，已達快速分類之目的。

關鍵詞：分類器、模糊量測、模糊類神經網路、資料探勘
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Abstract 

The pattern classification is an important issue on Information technology and biological engineering. It is 

also a key element to data mining research. Recently, Fuzzy-Neural network system is used in many pattern 

classifiers. In this paper, a new method is proposed for setting a variable Fuzzy-Neural network structure directly 

from numerical data. It provides several examples of operation that demonstrate the strong qualities of this method. 

We propose a variable fuzzy-neural structure network, which constructs by 3 layers for pattern classification. 

The first layer is for data input, and third layer is for output decision. We make the unit of second layer of network, 

which is set by each activation fuzzy hyper-box for each class. The fuzzy hyper-box is an n-dimensional box 

defined by a min point and max point with a corresponding membership function. Then, we test the condition of 

overlap of these hypercube by defined tuning-structure parameter, which is made by fuzzy measure, information 

support degree and data separation degree. We decide how many loops at most in the second layer of the network 

should be rebuild again. We also create a feedback node in third layer to decide the parameter value of each unit in 

second layer. We can generate a high efficiency classifier by this dynamic neural-fuzzy network structure using 

sufficient information of all training data. We also decrease the complexity of classification computation according 

to different test data. 
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I. Introduction 

Pattern classification is a key component to many engineering, such as radar, seismic, control, sonar, bio-information 

and diagnostic application. In case of significant computer progress, artificial intelligent pattern recognition still faces 

continuous big challenge from human recognition. Humans always can collect the knowledge from the uncertain or 

ambiguous data. So, it seems be solved more efficiently by human in classification problem which still can’t be dealt 

perfectly in computer. Many methods still are proposed to improve the performance of classification problem.  

In general, we divide the methods of classification problem in four groups as the following descriptions. 1) Statistical 

method: It was used in early classifier such as linear discriminate, quadratic discriminate, nearest neighbor, Bayes 

independence and Bayes second order. The Bayes’ classifier was well known that has the least error classification rate. It is 

not practical in solving real world classification problem, since we need to know the probability density function of data 

previously. 2) Neural network: It is a system that is deliberately constructed to make use of some organizational principles 

resembling those of human brain such as [1-3] have good tasks. 3) Fuzzy inference engine: It mentioned the relation between 

classification problem and fuzzy set by Zadeh in [4]. Expert system identifies different pattern by the knowledge fuzzy rule 

database, which is set up by querying human expert experience or other techniques directly from training data. 4) Hybrid 

neural –fuzzy technique: It is one of the more promising approaches to computer-based pattern recognition [5-8]. 

Since we are not easy to find the experts, and who usually hard to express their knowledge. So, many different 

approaches extract knowledge directly from training data. These methods are based on neural networks or fuzzy set theory 

[9-20]. S. Abe and M-S. Lan extract the fuzzy rules from numerical data by recursively resolving overlaps between two 

classes [18-19]. Then, they said the optimal input variables for rules are determined using the number of extracted rules as 

criterion. But, there are still some drawbacks on this method such as following points. 1) It needs more computation time to 

recursively resolving overlaps between two classes. 2) It sometimes can’t be resolved in some critical condition. 3) It can’t 

update the rule structure  on line. 

Hong and Lee have pointed out that the drawbacks of most fuzzy controllers and fuzzy expert systems are that they need 

to predefine membership functions and fuzzy rules to map numerical data into linguistic terms and to make fuzzy reasoning 

work [20]. They proposed a method based on the fuzzy clustering technique and the decision tables to derive membership 

functions and fuzzy rules from numerical data. However, they still need to predefine the input variable smallest unit and it 

will take more computation time for constructing decision tables and merging operations as the attribute number and data 

scale becomes large. 

Tzu-ping Wu and Shiyi-Ming Chen have a learning algorithm [21] based on the α -cuts of equivalence relations and 
α -cuts of fuzzy set s to construct the membership functions of the input variables and the output variables of fuzzy rules and 

to induce the fuzzy rules from numerical training data set. By experiment on Iris data, it shows the algorithm has a higher 

average classification ratio and can generate fewer rules than the existing algorithm. By this algorithm, we should predefine 

the α  value to decide how many output linguistic labels will be generated. Then, there are still many α  values must be 

selected as the number of input attribute is large or too many output linguistic labels were generated. That means we should 

decide many α  values to create the input-value subsets for each input linguistic label of each linguistic variable. But, it 

didn’t tell us how to select the α  value. 

Artificial neural networks have training and learning ability on line. And they have been successfully used in many 

pattern recognition problems [1-3]. But, this approach always likes  a black box that can’t be analyzed and explained in 

physical meaning. It usually lacks an ability to model the uncertain or ambiguous information existing among data, which is, 

so often encountered in the real world. 

In this paper, we construct a high efficiency classifier by using the combination of fuzzy inference and neural network 

technology. In section II, we describe the definition of measure of fuzziness that will be used to restrict the neural network 

node making sense. The variable structure of fuzzy neural network will be showed in section III. The activation hyper-box, 

sub-inhibition hyper-box, total-inhibition hyper-box and loop feedback network node are defined. Then, we discuss the 

learning algorithm to get all parameters in this fuzzy-neural network in section IV. Finally, we show the performance for this 

high efficiency classifier to compare with other method in section V. We also make some conclusions in section VI.  

II. Measure of Fuzziness 
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A. Definition of measure of fuzziness  [22] 

Two categories of uncertainty on data information can be recognized: vagueness and ambiguity. In general, vagueness is 

the uncertainty associated with difficulty of making a sharp or precise boundary in grouping objects of interest, while 

ambiguity is the uncertainty associated with choice, that is, difficulty in making a choice between two or more alternatives. 

Clearly, the concept of fuzzy sets provides a basic mathematical framework for dealing with vagueness. On the other hand, 

the concept of fuzzy measures provides a general mathematical framework for dealing with ambiguity. Hence fuzzy sets and 

fuzzy measures are tools for representing these two distinct forms  of uncertainty. Measures of uncertainty related to 

vagueness are referred to measures of fuzziness.  

In general, a measure of fuzziness is a function           

       RxPf →)(:
~

                  

where )(
~

xP  denotes the set of all fuzzy subsets of X, R is the real line, and the function f  satisfies the following 

axioms: 

Axiom 1: 0)( =Af  if only if A  is a crisp set. 

Axiom 2: BA p , )()( BfAf ≤ . Where BA p  denotes that A  is shaper than B . 

Axiom 3: )(Af  assumes the maximum values if only if A  is maximally fuzzy. 

Axiom 1 indicates that a crisp set has zero degree of fuzziness. Since there are different definitions of  “shaper” in 

Axiom 2 and “maximally fuzzy” in Axiom 3, several different measures of fuzziness exist in the literature. In this paper, we 

are based on the following concept of  “shaper” and  “maximally fuzzy ”: 

1. Ba p ( A  is shaper than B ) is defined by 
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where X  denotes the cardinality of the universal set X. This measure of fuzziness can be considered as the entropy 

of a fuzzy set. 

B. Measure of system fuzziness 

Without loss of generality, we consider multi-input-single -output fuzzy logic system, since a multi-output system can 

always be decomposed into a group of single-output system. In this section, we define a classification system by a sequence 

of multi-input-single-output fuzzy rules. As following: 

jR : If 1x  is jA1  and 2x  is jA2 … … … and nx  is njA  then the class is jc  

Where  

n  is the number of attribute of the classification system, i.e., the dimension of system. 

c  is the number of class of the system. 

ijA  is the linguistic label. 

ni ,....2,1=  
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cj ,....2,1=  

By the T -norm operator with min operation, we can rewrite the system by the other symbols as fo llowing description: 
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We also define the measure of fuzziness for rule jR , 
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This equation shows how fuzziness for a system description. Does any more rule description will let the system more 

clear? Some rules are good sufficient condition and don’t need more redundancy rule to confuse the system. In next section, 

we will base on this concept to construct an optimal neural network structure for classifier.   

III. Variable Neural-Fuzzy Network Structure  

A. Min-Max points, Hyperbox Fuzzy Sets, and The membership Function 

In this paper, we use the hyper-box definition in [7]. We normalize the range of each dimension from 0 to 1; hence the 

pattern space will be the n -dimensional unit cube 
nI . The membership function for each hyper-box fuzzy set must describe 

the degree to which a pattern fits within the hyper-box. In addition, it is typical to have the membership values range between 
0 and 1. Let each hyper-box fuzzy set;  jB  be defined by the order set  

{ } n
jjjjj IXWVXfWVXB ∈∀= ),,(,,, … … … … … … … … … … … … … … .. … .. … … … … … … … (5) 

Using this definition of a hyper-box fuzzy set, the aggregate fuzzy set that defines the k th pattern class kC is defined 

as  

j
Kj

k BC
∈

= U … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … … … … … … (6) 

where K  is the index set of those hyper-boxes associated with class k . Note the union operation in fuzzy set is 

typically the max of all of the associated fuzzy membership functions.  
The membership function )( hj Ab  for the j th hyper-box, 1)(0 ≤≤ hj Ab , must measure the degree to which the 

h th input pattern hA  falls from the center of the hyper-box jB . On a dimension-by-dimension basis, this can be 

considered a measurement of how far each component from the center of the hyper-box. Also, as )( hj Ab  approaches 1, the 

point should be more near by the center of the hyper-box jB . With the value 1, it represent the point is the center of the 

hyper-box exactly . And, the edge of the hyper-box should be assigned the value near 0. The function that meets all above 

criteria is defined as following equations: 
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where n
hnhhh IaaaA ∈= ),...,( 21  is the h th input pattern, ),...,( 21 jnjjj vvvV =  is minimum point for jB , 

),...,( 21 jnjjj wwwW =  is maximum point for jB , and δ  is the sensitivity parameter that regulates how much sample data 

in the hyper-box. The more data support in this hyper-box, the value of δ  more closed to 0. But, it is not really critical for 

the classification rate. It will be selected by any value below 0.1. The connections are adjusted using the algorithm described 

in section IV. 

B. Implementing The variable Neural -Fuzzy Network Structure 

Let us review firstly on general min-max neural network in [7] that shows the structure on fig 1. This structure has 3 

layers: the first layer supports n attributes for testing data input, the second layer is configured by m hyper-boxes, the third 

layer has c nodes for different classes. Using the definition of hyper-box in [7] or [8], we find that each hyper-box should be 

cut very clearly. And, this unnecessary  cut result in error sometimes. Anyway, this structure always uses too many hyper-box 

nodes in second layer that means too much cost to implement this system. We will conquer this drawback on next paragraph. 

We propose another variable structure in this paper that shows on Fig 2. The first and third layer in fig 2, it same as in 

fig 1. There are only c hyper-box nodes in second layer and increase one feedback node lf  in third layer. This change will 

save cost on hardware implementation, because we don’t need too many second layer node. We will save the computation 

time on software implementation, since it just need less computation unit than Fig 1. Each hyper-box node can be represented 

by function ),,,()( lWVXFXb l
j = , called l th loop hyper-box function or l th level hyper-box function. The feedback 

node lf  feedback the value )(Xb l
j  for next loop until the feedback criteria is satisfied. We will discuss this criteria based 

on measure of fuzziness later. 

C. l th loop hyper-box function 

For saving the second layer unit cost, we divide the universe space in the least hyper-boxes. If we got c classes sample 

data, we have c hyper-box in the zero loops (that means initial value 0
j

b  will be assigned firstly). To solve overlaps between 

different classes, we introduce two types of hyper-boxes, which were discussed in [18]: activation hyper-boxes, which define 

the existence regions for classes, and inhibition hyper-boxes, which inhibit the existence of data within the activation 

hyper-boxes. These hyper-boxes are defined recursively. First we determine activation hyper-boxes by calculating the 

minimum and maximum values of data for each class. If the activation hyper-box for class i  overlaps with any other 
activation hyper-boxes for class j , the overlapping region is defined as a sub-inhibition hyper-box. We also define the 

union of all sub-inhibition hyper-box as a main- inhibition hyper-box. If the main - inhibition hyper-box is existed, then we 

will find next loop activation hyper-boxes 1
j

b . The more loops generate, the more small activation hyper-boxes will be 

found. If we didn’t give any limitation, we may find an activation hyper-box include only one sample data. But it is no 

meaning to construct so small hyper-box, because that sample data may be just a noise or some uncertainty. We don’t need 

this uncertainty or ambiguous data to become so clear information in our structure and to waste our computation time. So, we 

should define some criteria to stop the recursively finding loop hyper-box function procedure.  
We assume the l th loop main - inhibition hyper-box can be divided to c activation hyper-boxes, then we can set a 

c-rules fuzzy system denoted by lR . Now, we check the fuzziness of this system by equation (4) as 
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We also set a α -cut value for the limitation of fuzziness measure. If α>)(
^

lRf  is true, then we don’t need the l th 

loop hyper-box function l
j

b  any more. It means that we only have l  different function parameters in second layer of this 

fuzzy-neural network. 

D. The feedback node function lf  and c class nodes function kc  in third layer 
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The feedback node in third layer is designed to change the second layer parameter. The connections between the third 

layer and second layer are binary valued and stored in the matrix U . The equation for assigning the values to the 

connections is  





=
0

1
jku

otherwise

cclassforboxhyperaisbif kj −
… … … … … … … … … … … … … … … … … … … … … … (9) 

where jb  is the j th node in second layer and kc  is the k th node in third layer. Each node in third layer represents a 

class. The output of node represents the degree to which the input pattern hA  fits within the class k . The transfer function 

of output node is defined as  

jkj

c

j
k ubc

1
max

=
= … … … … … … … … … … … … … … … … … … … … … … … … … ..(10) 

There are two main ways that the output class nodes can be utilized. If a soft decision is desired, the output is utilized directly. 

If a hard decision is required, the output node with the highest value is located. 
This final result is depend on the second layer node value. We can find the two highest values of output node values kc  

are 1kc  and 2kc . If the difference of these two values is smaller than the value β , the second layer parameters should be 

changed until we don’t have next loop values. So, if β>− 21 kk cc  is true, then we can stop to change next loop parameter. 

IV. The Algorithm to find hyper-boxes  

In this section, we describe the recursive definition of activation and inhibition hyper-boxes by 2 dimensions, 2 classes 

example that shows on fig 3. We define the intersection area that nominate inhibition hyper-box for loop1 denoted by I(1). 

We will find the activation hyper-boxes in loop1. an activation l
iiA , is defined, which is the maximum region of class i  

data { }i
l

iik
l

ii
l
ii XxmkWxVxA ∈=≤≤= ,,....,1,  

Where  

kx : the k th element of x;  

l
iiV : the minimum value of kx  for x iX∈ ; 

l
iiW : the maximum value of kx  for x iX∈  

We also can find another class activation hyper-box denoted by l
jjA . If there is no overlap between activation 

hyper-boxes l
iiA  and l

jjA , we don’t need to find next loop activation hyper-box. If the activation hyper-boxes l
iiA  and 

l
jjA  overlap, we resolve the overlap recursively as illustrated in fig 3 in which we define the overlapping region as 

sub-inhibition box of loop l  denoted as )(lI .   

For n dimensional data and c classes problem, we will follow above procedure to set all activation hyper-boxes and 

sub-hyper-boxes. We will connect all sub-hyper-boxes for each loop to become a main -hyper-box. We resolve the 

main-hyper-box to become many activation hyper-boxes. It is a recursive procedure until the condition α>)(
^

lRf  be 

satisfied in equation (8).  

V. Performance Evaluation  

We will show performance of this classifier by different win e classes on real word data. We also show the result that 

compare with other methods. All datum come from University of California, Irvine database.  
There are three classes of wine for 178 record data. Each record data has 13 attributes (Alcohol、Malic acid、Ash、

Alcalinity of ash、Magnesium、Total phenols、Flavanoids、Nonflavanoid phenols、Proanthocyanins、Color intensity、

Hue、OD280/OD315 of diluted wines、Proline) which show on fig 4( 59 records for first class, 71 records for second class, 48 

records for third class). 
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First, we set up the fuzzy -neural network by training all 178 data records and test by the same data. Using same data, 

Corcoran 和 Sen [23]  generate 60 non-fuzzy if-then rules via other learning system based on genetic algorithm. The result 

shows as following: optimum classification rate 100%, average classification rate 99.5%, the worst classification rate 98.3%.  

Ishibuchi, Nakashima and Murata[22] proposed lattice-separation method also using the same data. They set up the 

fuzzy inference engine via 5 linguistic terms and one “don’t care” term to be fuzzy rule premise. Since there are 13 attributes 

for the wine data, it may generate 136  rules for this training algorithm. The best 60 rules will find by the genetic algorithm. 

The result shows as following: optimum classification rate 99.4%, average classification rate 98.5%, the worst classification 

rate 97.8%. 

In this paper, we test all data by our method. Since there are three classes of wine, we got three activation hyper-boxes 

in 0 loop. The result shows as following: optimum classification rate 100%, average classification rate 100%, the worst 

classification rate 100%. 

VI. Conclusion 

In this paper, we propose a variable fuzzy-neural structure network that constructs by 3 layers for pattern classification. 

The first layer is for data input, and third layer is for output decision. We make the second layer of network, which is set by 

each activation fuzzy hypercube for each class. The fuzzy hypercube is an n -dimensional box defined by a min point and max 

point with a corresponding membership function. Then, we test the condition of overlap of these hypercube by defined 

tuning-structure parameter, which is made by fuzzy measure, information support degree and data separation degree. We 

decide whether the second layer of the network should be rebuild  again. Repeat above procedure, we can generate a high 

efficiency classifier by this dynamic neural-fuzzy network structure using sufficient information of all training data. We also 

decrease the complexity of classification computation according to different test data.  
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Fig 4  13 attributes data distribution for 3 classes of wine. 



宜蘭技術學報  第九期電機資訊專輯 

156 

 


