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Abstract

The pattern classification is an important issue on Information technology and biological engineering. It is
also a key element to data mining research. Recently, Fuzzy-Neural network system is used in many pattern
classifiers. In this paper, a new method is proposed for setting a variable Fuzzy-Neural network structure directly
from numerical data. It provides several examples of operation that demonstrate the strong qualities of this method.

We propose a variable fuzzy-neural structure network, which constructs by 3 layers for pattern classification.
The first layer is for data input, and third layer is for output decision. We make the unit of second layer of network,
which is set by each activation fuzzy hyper-box for each class. The fuzzy hyper-box is an n-dimensional box
defined by a min point and max point with a corresponding membership function. Then, we test the condition of
overlap of these hypercube by defined tuning-structure parameter, which is made by fuzzy measure, information
support degree and data separation degree. We decide how many loops at most in the second layer of the network
should be rebuild again. We also create a feedback node in third layer to decide the parameter value of each unit in
second layer. We can generate a high efficiency classifier by this dynamic neural-fuzzy network structure using
sufficient information of all training data. We also decrease the complexity of classification computation according
to different test data.

Key Words : pattern classification, variable neural-fuzzy network structure, data mining, fuzzy measure



|. Introduction

Pattern classification is a key component to many engineering, such as radar, seismic, control, sonar, bio-information
and diagnostic application. In case of significant computer progress, artificia intelligent pattern recognition still faces
continuous big challenge from human recognition. Humans aways can collect the knowledge from the uncertain or
ambiguous data. So, it seems be solved more efficiently by human in classification problem which still can’t be dealt
perfectly in computer. Many methods still are proposed to improve the performance of classification problem.

In general, we divide the methods of classification problem in four groups as the following descriptions. 1) Statistical
method: It was used in early classifier such as linear discriminate, quadratic discriminate, nearest neighbor, Bayes
independence and Bayes second order. The Bayes' classifier was well known that has the least error classification rate. It is
not practical in solving real world classification problem, since we need to know the probability density function of data
previously. 2) Neural network: It is a system that is deliberately constructed to make use of some organizational principles
resembling those of human brain such as[1-3] have good tasks. 3) Fuzzy inference engine: It mentioned the relation between
classification problem and fuzzy set by Zadeh in [4]. Expert system identifies different pattern by the knowledge fuzzy rule
database, which is set up by querying human expert experience or other techniques directly from training data. 4) Hybrid
neural —fuzzy technique: It is one of the more promising approaches to computer-based pattern recognition [5-8].

Since we are not easy to find the experts, and who usually hard to express their knowledge. So, many different
approaches extract knowledge directly from training data. These methods are based on neural networks or fuzzy set theory
[9-20]. S. Abe and M-S. Lan extract the fuzzy rules from numerical data by recursively resolving overlaps between two
classes [18-19]. Then, they said the optimal input variables for rules are determined using the number of extracted rules as
criterion. But, there are still some drawbacks on this method such as following points. 1) It needs more computation time to
recursively resolving overlaps between two classes. 2) It sometimes can’ t be resolved in some critical condition. 3) It can’t
updatetherulestructure online.

Hong and L ee have pointed out that the drawbacks of most fuzzy controllers and fuzzy expert systemsare that they need
to predefine membership functions and fuzzy rules to map numerical data into linguistic terms and to make fuzzy reasoning
work [20]. They proposed a method based on the fuzzy clustering technique and the decision tables to derive membership
functions and fuzzy rules from numerical data. However, they still need to predefine the input variable smallest unit and it
will take more computation time for constructing decision tables and merging operations as the attribute number and data
scale becomeslarge.

Tzu-ping Wu and Shiyi-Ming Chen have a learning algorithm [21] based on the & -cuts of equivalence relations and
& _cuts of fuzzy set sto construct the membership functions of the input variables and the output variables of fuzzy rules and
to induce the fuzzy rules from numerical training data set. By experiment on Iris data, it shows the algorithm has a higher
average classification ratio and can generate fewer rules than the existing algorithm. By this algorithm, we should predefine
the & value to decide how many output linguistic labels will be generated. Then, there are still many @ values must be
selected as the number of input attribute is large or too many output linguistic labels were generated. That means we should
decide many @ values to create the input-value subsets for each input linguistic label of each linguistic variable. But, it
didn’ t tell ushow to select the @ value.

Artificial neural networks have training and learning ability on line. And they have been successfully used in many
pattern recognition problems [1-3]. But, this approach aways likes a black box that can’t be analyzed and explained in
physical meaning. It usually lacks an ability to model the uncertain or ambiguous information existing among data, whichis,
so often encountered in the real world.

In this paper, we construct a high efficiency classifier by using the combination of fuzzy inference and neural network
technology . In section |1, we describe the definition of measure of fuzziness that will be used to restrict the neural network
node making sense. The variable structure of fuzzy neural network will be showed in section I11. The activation hyper-box,
sub-inhibition hyper-box, total-inhibition hyperbox and loop feedback network node are defined. Then, we discuss the
learning algorithm to get all parametersin this fuzzy -neural network in section V. Finally, we show the performance for this
high efficiency classifier to compare with other method in section V. We al so make some conclusionsin section VI.

1. Measure of Fuzziness
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A. Definition of measur e of fuzziness [22]

Two categories of uncertainty on datainformation can be recognized: vagueness and ambiguity. In general, vagueness is
the uncertainty associated with difficulty of making a sharp or precise boundary in grouping objects of interest, while
ambiguity is the uncertainty associated with choice, that is, difficulty in making a choice between two or more aternatives.
Clearly, the concept of fuzzy sets provides a basic mathematical framework for dealing with vagueness. On the other hand,
the concept of fuzzy measures provides a general mathematical framework for dealing with ambiguity. Hence fuzzy sets and
fuzzy measures are tools for representing these two distinct forms of uncertainty. Measures of uncertainty elated to
vagueness are referred to measures of fuzziness.

In general, ameasure of fuzzinessisafunction

f:P(X)® R

where P(X) denotes the set of all fuzzy subsets of X, R is the real line, and the function f satisfies the following
axioms:

Axiom1: f(A) =0 ifonlyif A isacrispset.

Axiom2: A: B, f(A) £ f(B).Where A= B denotesthat A is shaper than B.

Axiom3: f (A) assumesthe maximum valuesif only if A is maximally fuzzy.

Axiom 1 indicates that a crisp set has zero degree of fuzziness. Since there are different definitions of “shaper” in
Axiom 2 and“ maximally fuzzy” in Axiom 3, several different measures of fuzziness exist in the literature. In this paper, we
are based on the following concept of “shaper’ and “maximally fuzzy”:

1. @ = B (A isshaperthan B)isdefinedby
"mx) £ for gl
imE)EmM(X), for m(x) >
i
Im()® m(x), for m(x)s3 =
|

for all xI X

N[

2. A ismaximally fuzzy if n;;(x):% foral X1 X

In this paper, the fuzzy measure that we want to introduce is defined by this function:

f(A)=- é {m)log,[mE)]+[1- m)]log,[1- MmO} o )
;(A) :% ............................. 2)

where | X| denotes the cardinality of the universal set X. This measure of fuzziness can be considered as the entropy
of afuzzy set.

B. Measur e of system fuzziness
Without loss of generality, we consider multi-input-single-output fuzzy logic system, since a multi-output system can
aways be decomposed into a group of single-output system. In this section, we define a classification system by a sequence
of multi-input-single-output fuzzy rules. Asfollowing:
Rj:lf X is Aij and X, is Aéj ........ and X is A]j then the classis C;
Where

N isthe number of attribute of the classification system, i.e., the dimension of system.
C isthenumber of classof the system.

Ai is the linguistic label.
i=12,...n
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j=12,...C

By the T -norm operator with min operation, we can rewrite the system by the other symbols as following description:
R = L L..
F QL LM, Lm0 X,)
Then, according to the definition (1) we have

f(A)=- &im, (log,[m (9)]+[1- m (x)log,[t- m ()}

x1 Ajj

F(A)

f(A, ™[

We also define the measure of fuzzinessfor rule Rj ,

FIUR) Z A TUA) e e 3)
i=1
and the total measure of fuzzinessfor the system
f(R) af(R) QA (A e e (4)
j=1i=1

This equation shows how fuzziness for a system description. Does any more rule description will let the system more
clear? Some rules are good sufficient condition and don’ t need more redundancy rule to confuse the system. In next section,
we will base on this concept to constructan optimal neural network structure for classifier.

[I1. Variable Neural-Fuzzy Network Structure

A. Min-Max points, Hyperbox Fuzzy Sets, and The member ship Function

In this paper, we use the hyper-box definition in [7]. We normalize the range of each dimension from O to 1; hence the

pattern space will be the n-dimensional unit cube | " . The membershi p function for each hyper-box fuzzy set must describe

the degree to which a pattern fitswithin the hyper-box. In addition, it istypical to have the membership values range between
Oand 1. Let each hyper-box fuzzy set; B; be defined by the order set

B; :{x,v,-,wj,f(x,vj,wj)} PRI e (5)

Using thisdefinition of ahyper-box fuzzy set, the aggregate fuzzy set that definesthe k th pattern class Cy isdefined

where K is the index set of those hyper-boxes associated with class k. Note the union operation in fuzzy set is

typically the max of all of the associated fuzzy membership functions.
The membership function b;(A,) for the jth hyper-box, 0£b;(A,) £1, must measure the degree to which the

hth input pattern Ay, falls from te center of the hyper-box B;. On a dimension-by-dimension basis, this can be
considered ameasurement of how far each component from the center of the hyper-box. Also, as b;(4,) approaches 1, the
point should be more near by the center of the hyper-box B; . With the value 1, it represent the point is the center of the

hyper-box exactly . And, the edge of the hyper-box should be assigned the value near 0. The function that meets all above
criteria isdefined asfollowing equations:
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_18 i ani - Vji - d (Wi - vji) : wii +d(Wji - Vi) - @i
by (An) =7 0 (7
i (An) na 1 min(ming, max( vy dwyi- Vji)))' min(l, max(0, R T )))ig (7)

i:]_T ]
where A, = (ayg, 8pp,-an,)1 | is the h th input pattern, Vi =(Vju,Vj2,Vjn) IS minimum point for B; ,
Wj =(Wjq,Wjp,..Wj,) ismaximum point for B;, and d isthe sensitivity parameter that regulates how much sample data
in the hyper-box. The more data support in this hyper-box, the value of d more closed to 0. But, itisnot realy critical for
the classification rate. It will be selected by any value below 0.1. The connections are adjusted using the algorithm described

insectionlV.

B. Implementing The variable Neural -Fuzzy Network Structure

Let us review firstly on general min-max neural network in [7] that shows the structure on fig 1. This structure has 3
layers: the first layer supports n attributes for testing data input, the second layer is configured by m hyper-boxes, the third
layer has c nodesfor different classes. Using the definition of hyper-box in [7] or [8], we find that each hyper-box should be
cut very clearly. And, thisunnecessary cut result in error sometimes. Anyway, this structure always uses too many hyper-box
nodes in second layer that means too much cost to implement this system. Wewill conquer this drawback on next paragraph.

We propose ancther variable structure in this paper that shows on Fig 2. The first and third layer in fig 2, it same asin
fig 1. There are only ¢ hyper-box nodesin second layer and increase one feedback node f "in third layer. This change will
save cost on hardware implementation, because we don’ t need too many second layer node. We will save the computation
time on software implementation, sinceit just need less computation unit than Fig 1. Each hyperbox node can be represented
by function b}(X)=F(X,V.W,1), caled |th loop hyperbox function or | th level hyper-box function. The feedback

node f' feedback the value b'j (X) for next loop until the feedback criteriais satisfied. We will discuss this criteria based

on measure of fuzziness later.
c. lth loop hyper-box function

For saving the second layer unit cost, we divide the universe space in the least hyper-boxes. If we got ¢ classes sample
data, we have c hyper-box in the zero loops (that meansinitial value b9 will be assigned firstly). To solve overlapsbetween
]

different classes, weintroduce two types of hyper-boxes, which were discussed in [18]: activation hyper-boxes, which define
the existence regions for classes, and inhibition hyper-boxes, which inhibit the existence of data within the activation
hyper-boxes. These hyperboxes are defined recursively. First we determine activation hyper-boxes by calculating the
minimum and maximum values of data for each class. If the activation hyper-box for class i overlaps with any other
activation hyper-boxes for class j , the overlapping region is defined as a sub-inhibition hyper-box. We also define the
union of all sub-inhibition hyper-box as a main- inhibition hyper-box. If the main- inhibition hyper-box is existed, then we
will find next loop activation hyper-boxes b? . The more loops generate, the more small activation hyper-boxes will be

found. If we didn’t give any limitation, we may find an activation hyper-box include only one sample data. But it is no
meaning to construct so small hyper-box, because that sample data may be just a noise or some uncertainty. We don’ t need
this uncertainty or ambiguous data to become so clear information in our structure and to waste our computation time. So, we
should define some criteria to stop the recursively finding loophyper-box function procedure.

We assume the | th loop main- inhibition hyper-box can be divided to c activation hyper-boxes, then we can set a

c-rules fuzzy system denoted by R . Now, we check the fuzziness of this system by equation (4) as

FRYZAL FIRD T @ FIAL) oo 6

=1 j=li=1

We aso set a a -cut value for the limitation of fuzziness measure. If f(R') >a is true, then we don’t need the | th

loop hyper-box function b' any more. It means that we only have | different function parameters in second layer of this
]
fuzzy -neural network.

D. The feedback node function f' and c class nodes function Ck in third layer

150



The feedback node in third layer is designed to change the second layer parameter. The connections between the third
layer and second layer are binary valued and stored in the matrix U . The equation for assigning the values to the
connections is

il if bj is a hyper - box for class ¢
Ujk =1 )

70 otherwise
where b; isthe jthnode in second layer and cy isthe kthnodein third layer. Each node in third layer represents a

class. The output of node represents the degree to which the input pattern Ay, fits within the class k . The transfer function

of output nodeis defined as

There are two main ways that the output class nodes can be utilized. If asoft decisionisdesired, the output isutilized directly.

If ahard decisionisrequired, the output node with the highest value islocated.
Thisfinal result is depend on the second layer node value. We can find the two highest valuesof output nodevalues ¢y

are ¢y and cyo . If thedifference of these two valuesis smaller than thevalue b , the second layer parameters should be
changed until wedon'’ t have next loop values. So, if |ck1 - G 2| > b istrue, then we can stop to change next loop parameter.

V. The Algorithm to find hyper-boxes

In this section, we describe the recursive definition of activation and inhibition hyper-boxes by 2 dimensions, 2 classes
example that shows on fig 3. We define the intersection area that nominate inhibition hyper-box for loopl denoted by 1(1).

We will find the activation hyper-boxes in loopl. an activation A,-'i , is defined, which is the maximum region of class i

Where
Xk : the k th element of x;

V,l : theminimumvalueof x, for xi X ;

W! : themaximum valueof x for xi X;

We aso can find another class activation hyper-box denoted by A'J-j. If there is no overlap between activation
hyper-boxes A,»'i and A'”- , we don’t need to find next loop activation hyper-box. If the activation hyper-boxes Ai'i and
A'” overlap, we resolve the overlap recursively as illustrated in fig 3 in which we define the overlapping region as
sub-inhibition box of loop | denoted as 1(1).

For n dimensional data and c classes problem, we will follow above procedure to set all activation hyper-boxes and

sub-hyper-boxes. We will connect all sub-hyper-boxes for each loop to become a main-hyper-box. We resolve the

main-hyper-box to become many activation hyper-boxes. It is a recursive procedure until the condition f(R') >a bhe
satisfied in equation (8).

V. Performance Evaluation

We will show performance of this classifier by different win e classes on real word data. We also show the result that
compare with other methods. All datum come from University of California, Irvine database.
There are three classes of wine for 178 record data. Each record data has 13 attributes (Alcohol Malicacid Ash

Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity
Hue OD280/0OD315 of diluted wines Proline) which show on fig 4( 59 records for first class, 71 records for second class, 48
records for third class).
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First, we set up the fuzzy -neural network by training all 178 data records and test by the same data. Using same data,
Corcoran Sen [23] generate 60 non-fuzzy if-then rulesviaother learning system based on genetic algorithm. The result
shows as following: optimum classification rate 100%, average classification rate 99.5%, the worst classification rate 98.3%.

Ishibuchi, Nakashima and Murata[22] proposed lattice-separation method also using the same data. They set up the
fuzzy inference enginevia 5 linguistic terms and one“don’ tcare” term to be fuzzy rule premise. Since there are 13 attributes
for the wine data, it may generate 6 rulesfor thistraining algorithm. The best 60 rules will find by the genetic algorithm.
The result shows as following: optimum classification rate 99.4%, average classification rate 98.5%, the worst classification
rate 97.8%.

In this paper, we test al data by our method. Since there are three classes of wine, we got three activation hyper-boxes
in O loop. The result shows as following: optimum classification rate 100%, average classification rate 100%, the worst
classification rate 100%.

V1. Conclusion

In this paper, we propose avariable fuzzy -neural structure network that constructs by 3 layers for pattern classification.
Thefirst layer isfor datainput, and third layer isfor output decision. We make the second layer of network, which is set by
each activation fuzzy hypercube for each class. Thefuzzy hypercubeisan n-dimensional box defined by amin point and max
point with a corresponding membership function. Then, we test the condition of overlap of these hypercube by defined
tuning-structure parameter, which is made by fuzzy measure, information support degree and data separation degree. We
decide whether the second layer of the network should be rebuild again. Repeat above procedure, we can generate a high
efficiency classifier by this dynamic neural-fuzzy network structure using sufficient information of al training data. We also
decrease the complexity of classification computation according to different test data.
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