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摘要 

本文提出一個搭配 LPC 語音編碼器之聲門激源模型以使語音信號能在

1400bps的情況下有效編碼。其中頻譜參數的編碼工作是以轉轍式線性預測類神

經網路伴隨多階段向量量化的方式來處理，而激源區分為兩類，屬於無聲的激源

是搜尋自隨機代碼簿，至於有聲激源則是從聲門代碼簿加以挑選，所有涉及到激

源信號的分析與合成以及代碼簿的構建程序皆有詳細交代。針對此一 1.4kbps語

音編解碼器所做之音質評鑑，其平均值為 2.993，而 2.4 Kbps 之 LPC 編碼器與

4.8 Kbps之 CELP編碼器的相對分數則分別是 2.272與 3.314。此外，我們亦嘗試

推出簡化版使其能在 ADSP-2181上執行，但由於演算法刪減與記憶體受限之故，

致使最後的音質跟著下降，這似乎意謂著整套編解碼功能的完整實現都還是得借

重擁有大記憶容量的浮點數 DSP晶片。 
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Abstract 

This paper presents a glottal excitation model to cope with the LPC vocoder for 

speech signals coded at 1400 bps.  We encode the spectral parameters by using a 

switched-predictive neural network along with multi-stage vector quantization.  While 

the unvoiced excitation is retrieved from a stochastic codebook, we use a glottal 

codebook to characterize the voiced excitation.  Procedures are described for analysis 

and synthesis of the excitation signals in addition to codebook construction.  The MOS 

test regarding the 1.4 Kbps GELP coder is 2.993, as compared with 2.272, 3.314 for 

the 2.4 Kbps LPC and 4.8 Kbps CELP coders.  A simplified version is developed to 

work on the ADSP-2181 processor, but it suffers quality degradation due to the 

algorithm truncation and memory restriction.  This suggests that fully implementation 

of the proposed coder may rely on a floating-point DSP chip integrated with large 

memory.  
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I.  INTRODUCTION 

Due to the booming demands of personal communication services, speech coders 

with low bit rates have been increasingly important for applications such as wireless 

telecommunications and internet telephony.  One class of speech coders that has been 

extensively used in practice is the linear prediction coding (LPC) vocoder [1], which is 

developed based on a parametric model.  The low bit rate is achieved by transmitting the 

involved parameters of the speech production model across the communication channel.  

At the receiving end the decoder is designed to regenerate speech signals according to 

these modeling parameters.  Speech quality synthesized in this manner at low bit rates is 

often judged as unnatural due to incorrect voicing decisions, poor spectral resolution, and 

oversimplified excitation functions [2,3].  However, improvements are achievable with 

some sophisticated excitation models such as multipulse [4,5], regular pulse [6,7], or 

stochastic codeword [8,9].  Advancement in excitation modeling has successfully come 

out with several standards ranging from 4.8 to 16 Kbps in the past decade [10].   

In fact, the ideal excitation for an LP coder is the residual signal obtained by inverse 

filtering the speech signal.  Many investigators recognized that the glottal features 

residing in the residual signal are essential for synthesizing natural-sounding speech 

[11-13].  In this research we aim at developing an efficient excitation model to simulate 

the residual signal so that high-quality synthetic speech is attainable at a low-bit rate.  

Since the feasibility of the designed speech coder is also our concern, we intend to 

implement the designed coder subject to feature constraints of the ADSP-2181 processor. 

 

 
II.  CODING SCHEME 

 
A. Speech production model 

 
To incorporate the glottal excitation into the LP coder, we adopt a hybrid speech 

production model called “glottal excited linear prediction (GELP)” [14].  As presented 

in Fig. 1, this model inherits the basic structure of the LPC vocoder but exhibits the 

generic nature of the CELP coder.  The analysis of speech signals is equivalent to the 

extraction of modeling parameters.  Given that the speech signal is sampled at 8 KHz, 

we update the analysis frame at a rate of 240 samples.  The analysis procedure begins 
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with a voicing decision along with pitch estimation.  Within each frame, a coarse 

estimate of the pitch period is obtained by adopting the average magnitude difference 

function (AMDF) [15] based on the lowpass filtered residual (LFR) [16].  The 

underlying frame is classified as voiced whenever the averaged magnitude of the speech 

signal is above 0.01 of the maximum allowable value and the resulting AMDF exhibits a 

distinct valley around the pitch period.  In case the speech segment is categorized as 

voiced, we adjust the estimated pitch period using one frame of look-ahead to render a 

reliable pitch follower.  A peak-picking procedure is then used to identify the glottal 

closure instant (GCI) subject to the constraint that the length deviation between any 

neighboring GCI’s has to be less than 20% of the estimated pitch period.  

 

 
B. Spectral parameters 
  

In order to characterize the spectral properties of speech signals, two sets of LP 

coefficients are derived respectively from the speech samples centered at the one-fourth 

and three-fourth places of the frame, each of which extending over a duration of 200 

samples.  Both of them are then converted to the line spectral frequency (LSF) 

parameters and jointly coded by using four-stage 22-bit (i.e., {6,6,5,5}) vector 

quantization [17].  Here we particularly apply a predictive neural network to render an 

 

 

 

 

 

 

 
 
 
 
 

Fig. 1.  Glottal excited linear prediction (GELP) speech production model 
 

glottal 
codebook 

stochastic
codebook 

pitch 
period 
modulator 

all-pole  
filter 

Speech 
Signal 

voiced 

unvoiced/ 
silence 

gA  

voicing 
decision 



 4

initial estimate of the average of two sets of LSF parameters.  As shown in Fig. 2, this 

network accommodates a single layer of neurons with purely linear functions, and each 

neuron collects LSF parameters of three past subframes as inputs.  It is evident that the 

parameters for quantization are the residual LSF vector.  Analogous to the switching 

method adopted by [18], two networks are prepared along with separate codebooks.  The 

procedures for training the predictive networks and LSF codebooks are as follows.  First, 

a primitive network is obtained by employing the quasi-Newton backpropagation method 

with all sampled LSF residual vectors involved.  These residual samples are then 

categorized into two groups according the rule that samples with smaller errors are 

clustered together while samples with larger errors are attributed to the second group.   

Samples in each group are subsequently used to derive a new network individually.  

Finally, we perform the test with respect to all the samples based on two derived networks.  

The categorization is rearranged to associate each sample vector with a predictive 

network that attains a smaller sum-squared error.  The above recategorization and 

network training are repeated iteratively until the reduction of the overall sum-squared 

error becomes negligible.   

 
 During the analysis phase, both network predictor/codebook pairs are tried, and the 

one that provides better quantization performance is selected for transmission along with 

 

 

 

 

 

 

 

 
 
 

Fig. 2. Predictive neural network and multi-stage vector quantization of LSF parameters 
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one bit to represent the switch.  The indices of the chosen codevector from all stages are 

transmitted to the decoder, and the quantized LSF vector is reconstructed by summing up 

the network output and all the codevectors from the multi-stage codebooks, i.e.,   
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where ji ,l  represents the quantized LSF parameters at the jth subframe of the ith frame.  

)(nW  and )(nb  are the weighting matrix and bias vector of the nth predictive network, 

respectively.  The codevector at the kth stage is denoted as )(n
kc , which is determined 

by searching M-best paths that achieve the overall lowest distortion.  In this study, the 

depth of codeword searching at each stage is 4 (i.e., M=4). 

In the foregoing discussion, although there is only one bit to denote the switch, the 

codebook entries in all stages ought to be increased twice.  The number of searched 

codevectors is therefore greater than that employed by the traditional method.  We 

believe that it is the primary reason why the switched codebook generally yields better 

performance.   

 
C. Source excitation 

 
The analysis of the residual signal can be divided into three parts, namely, the main 

excitation, low-frequency component, and noise source.  While the glottal features 

manifests itself as a low-frequency waveform, we quantize the waveform of the integrated 

residual signal on a pitch-period by pitch-period basis.  Each pitch period is defined as 

the interval between two consecutive GCI’s. 

The magnitude of the main excitation relates to the abruptness of the glottal closure 

and reflects on vocal quality directly.  We describe the pulse magnitude, m, by  
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where )(ie  denotes the low-frequency component of the residual obtained by using a 

6th-order median filter, p  represents the pitch period, and α  is an adjustable factor 

that is included in the excitation model.  Because the synthetic speech is not perceived 

differently unless α  is changed considerably, we encode the value of α  using one 
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single bit per frame.  The coded bit, termed bm , is 1 whenever the averaged α  is 

greater then 1.3 (which is approximately the mean value of all the measured α ’s), and it 

is 0 otherwise.   

The analysis of the low-frequency component is also performed on the basis of pitch 

periods.  We portray this component by using vector quantization.  Steps of processing 

such a component comprise the integration, linear trend removal, and length adjustment.  

A total of 6353 normalized integrated residual templates obtained from twelve sentences 

uttered by four subjects are used in the training stage of vector quantization.  All 

templates are unified to have a length of 64 samples and a power level of unity.  The 

LBG algorithm [19] in conjunction with the maximum descent criterion [20] is employed 

to construct the codebook.  We empirically find that 16 entries give adequate 

performance in describing the integrated residual.  In particular, we use only one 

codeword to delineate the source characteristics for each voiced frame.  The codeword 

index cn  is chosen to have the maximum correlation across the entire frame 
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where gciN  represents the number of GCI’s, and )(kui  denotes the kth element of the 

ith glottal codeword.     

Finally, as the glottal turbulent noise is important for producing natural voices, the 

proposed excitation model incorporates a noise source originally developed by McCree 

and Barnwell [21]. 

 
D. Excitation replication 

 
The decoder at the receiving end is designed to reconstruct speech signals from 

coded bit string.  For unvoiced frames, the synthetic speech is carried out by feeding the 

stochastic codewords to the synthesis filter obtained by converting the decoded LSF 

parameters.  The synthesis of voiced speech is rather complicated since we have to 

replicate the glottal features based on quantized information.  Since the synthesis of 

unvoiced speech already inherits the nature of waveform matching, we decide to keep 

track of GCI’s for voiced frames.   

As our coding scheme encodes the averaged pitch period and the last GCI position, 
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we retrieve the rest GCI positions by means of interpolation and regulation to render a 

smoother transition between frames.  The approach for pitch smoothing is arranged as 

follows.  We first apply a first-order IIR lowpass filter, )7.01/(3.0 1−− z , to a data 

sequence of gciN  samples, each of which retaining an averaged pitch value avgp .  The 

initial filter memory holds the last pitch period derived in the previous frame.  While the 

lowpass filter alters the pitch periods, we linearly scale these periods so that the last GCI 

is back to its original position.  After determining each individual pitch period within the 

underlying frame, we generate the excitation waveform in a filterlike manner by 

)()15.01()(15.0)( /1/1 kukuku c
N

r
N

r
gcigci −+= , .63,,2,1,0 L=k         (4) 

where )(kur  represents the waveform of the running excitation, and )(kuc  is the 

glottal codeword chosen in the present frame.  The above recursive equation allows the 

forthcoming glottal features to merge into the intermediate excitation.   

We remind that the excitation waveform, )(kur , is an integrated version of the 

residual.  The differentiation with respect to such a waveform can only provide the 

low-frequency part of the glottal excitation.  A complete glottal excitation model 

requires the involvement of the high-energy pulse and turbulent noise.  Supposed that 

)(kv  is the derivative of an interpolated )(kur  with a length of p , a dispersed pulse 

sequence )(ki p  given in Table I is introduced to )(kv  by  

)(
16

16)(
16

)( kikkvikv pβ−
+=

,  14,,1,0 L=k .         (5) 

where β  is computed recursively from its previous rendition and the encoded bit bm  

by  

 ( )bm6.014.06.0 +×+= ββ .              (6) 

In Eq. (6) the boundaries for β  are 1.0 and 1.6, which correspond to the averages of the 

upper 50% and lower 50% of the measured α ’s, respectively.  

Table I.  Numerical values of the dispersed pulse 
 

 Index Value 
0  4 1.000 0.039 -0.473 0.303 -0.155 
5  9 0.112 -0.078 0.092 -0.044 0.040 

10  14 0.039 0.020 -0.014 0.001 0.003 
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Our informal listening test confirms that the participation of such a dispersed pulse 

not only reduces buzzy quality but also produces expected vocal quality quite effectively.  

However, the spectrum of the resulting excitation is generally not flat.  Such a 

consequence thus calls for spectral adjustment. 

Note that the nth autocorrelation function, )(nR , with respect to the periodical 

excitation )(nv  is 
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−
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p

k
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,           (7) 

where the symbol .mod. denotes the modulus operation, and p  is the length of 

excitation.  The change to an arbitrary )(iv , termed )(id , will yield a different 

autocorrelation function )(~ nR  such that 

( )[ ] )(.mod).()()()(~ nRpnipvnividnR +−+++= .        (8) 

While the desired excitation needs to possess a flat spectrum, we deliberately alter 

samples around the GCI (e.g., { }1,4,3,2 −∈ pi ) to flatten the spectrum of the resulting 

excitation.  Theoretically, the autocorrelation functions for an excitation with a flat 

spectrum should be zero except for the zero-lag term.  Taking the first q  nonzero-lag 

autocorrelation functions gives 
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In case 1>q , the solution for the above over-determined system is  
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Finally, we revise the new )(~ iv  as )()()(~ idiviv += .  In this research, q  is 

chosen to be 5.  We derive )2(~v , )3(~v , )4(~v  and )1(~ −pv  one by the other to reach 

a near-flat spectrum.   

 Following the modification of siv )'(~ , we have since added a noise source in series 

with the glottal codebook excitation to contribute additional high-frequency content.  
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Fig. 3 demonstrates typical examples of the derived glottal excitation.  

 

  
E. Gain control 

 
The gain control is the remaining issue in the coding scheme.  Following the 

derivation of the excitation, the synthetic speech is obtained by feeding the gain-adjusted 

excitation (either the glottal excitation or the innovation sequence) to a synthesis filter.  

Here we encode the logarithm of the segmental power instead of the excitation gain.  For 

each voiced frame the pitch-synchronous segmental power on a logarithmic scale is 

obtained and interpolated into 4 representative values.  These 4 values are vector 

quantized using 5 bits.  The unvoiced frame is coded in a similar manner, but only the 

power levels derived from two subframes are involved in the quantization.   

During the synthesis phase, we interpolate the LSP parameters to acquire the 

synthesis filter as the synthesis interval slides across frames.  The excitation gain is then 

derived from the segmental power using a two-filter strategy.  Namely, there are two 

filters employed to perform speech synthesis: the one holding the current LP coefficients 

is in charge of the excitation response )(kf , and the other retaining the previous LP 

coefficients takes care of memory contribution )(kh .  The synthesized speech for each 

 

Fig. 3  Examples of glottal excitation 
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synthesis interval is the sum of the outputs of the two filters.  Thus, 

2
1

0
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M
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M

k
r += ∑

−

=

 ,           (11) 

where rP  is the segmental power and M is the length of the interval.  The gain gA  

can be obtained by solving the above quadratic equation.  To avoid the obtainment of a 

negative or complex gA , we damp the memory contribution )(kh  by multiplying each 

LP coefficient with 0.97 raised to the power of its index.  This approach has been found 

to work well in our formal study [14].  Besides, it serves as the role of regulating energy 

deviation due to postfiltering [22], which is used in many pulse-excited vocoders to 

emphasize synthetic speech in formant regions.  

 
F. Bit allocation 

 
As manifested by the speech production model in Fig. 1, much emphasis is placed 

upon the LP filter and the source excitation.  For each voiced frame we encode the 

spectral properties of the LP filter by applying the switched predictive-network with 

four-stage vector quantization to two sets of 10th-order LSF parameters.  However, we 

have reserved the bits at the 4th stage to accommodate more stochastic codewords while 

processing unvoiced frames.  The rationale behind the reallocation of bits is that the 

formant structure of unvoiced speech is generally not as distinctive as that of voiced 

speech.  Therefore, the search among a larger stochastic codebook not only partially 

makes up for the deficiency in spectral modeling but also provides chances to produce 

plosive sounds.   

The coding procedure of the unvoiced excitation is a direct modification of CELP.  

The analysis frame is merely partitioned into two subframes, each of which has a length 

of 120 samples.  The design and search of the stochastic codebook follow the 

specifications of FS-1016 [23].  On the other hand, the coded source parameters for each 

voiced segment consist of the logarithmic segmental power, the glottal codeword, the 

pulse magnitude, and the number of GCI’s associated with the last GCI position.  The 

purpose of encoding the last GCI position rather than the pitch period is to achieve pitch 

synchronization and higher pitch resolution.  The coding rate of our designed GELP 

coder is 1.4 Kbps.  Table II presents the detailed coding scheme.   
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Table II.  Bit assignment for the 1.4 Kbps GELP coder 
 

 Voiced  Unvoiced 
Voicing  1 1
Codebook switch  1 1
LSF parameters 22 17
Segmental power 5 5
Glottal codeword 4
Pulse magnitude 1
GCI number 3+(2)*
Last GCI location 3+(2)*
Stochastic codeword 8×2
Excitation polarity 1×2
Total 42 42

* Depending upon whether the number of GCI’s exceeds 8, (2) bits are 
alternatively shifted from “last GCI location” to “GCI number” in the 
voiced frame. 

 
 

III.  LISTENING EVALUATION 
 

 We perform a listening test for a total of thirty files corresponding to speech 

uttered by six different speakers (3 male, 3 female), each speaker delivering five 

sentences.  The mean opinion scores (MOS) judging from the 2.4Kbps LPC-10e v.55 

(FS-1015) vocoder [24] and 4.8Kbps CELP (FS-1016) coder [23] are provided as 

reference.  Twenty-four listeners participated in the test.  During the testing period, 

each individual used a high-quality handset as a listening device in a quiet room.  The 

sequence of the recordings in each presentation was played randomly.   

 Table III presents the results derived from the listening test.  The scores 

associated with the LPC, GELP, CELP vocoders are 2.2722, 2.9931, and 3.3139, 

respectively.  According to the opinions gathered from the listeners, the GELP coder 

suffers several weaknesses.  For example, the utilization of a common 

frequency-shaping noise cannot fully characterize subtle differences of vocal quality.  

Faults among female synthetic speech are ascribable to inaccurate GCI identification, 

which leads to improper modeling of the glottal phase characteristics.  The incorporation 

of a unique pulse sequence is probably another reason of quality degradation.  All these 

defects lead to unfavorable responses from the listeners.  Currently, a follow-up research 

project is undertaken to overcome these problems by using a frequency-domain approach. 

 
 
Table III.  Mean Opinion Scores (MOS) for speech sentences synthesized by CELP, 
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GELP, LPC coders 
 

  4.8 Kbps  
CELP 

1.4 Kbps  
GELP 

2.4 Kbps   
LPC 

Male speakers 3.4361 3.2667 2.2778 
Female speakers 3.1917 2.7194 2.2667 
AVERAGE 3.3139 2.9931 2.2722 

 
                         
 
 

IV.  IMPLEMENTATION 
 
The processor considered in our study is the ADSP-2181, which is a 16-bit 

fixed-point DSP chip operated at 33.3 MHz.  In addition to three independent 

full-function computational units which support single-cycle instructions, the ADSP-2181 

includes full-base on-chip memory: 16K×24-bit words of program memory and 

16K×16-bit words of data memory.  As the ADSP-2181 has demonstrated its capability 

of performing the well-known 4.8Kbps CELP coder without the need of external memory, 

it seems practicable to implement the proposed 1.4Kbps GELP coder on such a chip in 

consideration of the processing speed and memory requirement.  In accordance to such a 

condition, the maximum sizes of both program and data memory for the GELP algorithm 

are set to 16K words, and the computation capability is counted as 610  

(= 6103.33 × /8000×240) fixed-point operations for a frame of 240 speech data sampling at 

8 KHz.  Table IV lists the number of words required to account for global variables.  It 

is observed that the most memory-consuming item is the switched LSF codebooks since 

each codevector comprises two sets of 10th-order LSF parameters.  The number of bits 

for encoding spectral parameters appears to reach its limit since each additional bit will 

enlarge the codebook drastically, leading to the exhaustion of remaining memory space.   

 
 

Table IV. Memory space required for the involved variables 
 

Predictive Weighting 2×30×10
Neural network Bias 2×10
LSF codebooks Stage. 1 2×64×20
 Stage. 2 2×64×20
 Stage. 3 2×32×20
 Stage. 4 2×32×20
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Glottal codebook 16×64
Stochastic codebook 512+120
Voiced gain  32×4
unvoiced gain  32×2
Data buffer 240×2
Window 240
Total 10868

 
 

In contrast to the arrangement of data memory, the settlement of program memory is 

rather difficult because we have to confine the program size while restricting the number 

of instruction cycles down to 
610 .  The manufacturer of the ADSP-2181 provides many 

useful libraries and illustrations in both C and assembly languages.  However, for 

simplicity, except for few routines most of the program is written in C.  This makes the 

resulting program less efficient not only in the memory utilization but in the 

computational speed.  Furthermore, the necessity of floating-point operations in many 

situations aggrandizes the problem of insufficiency since the accomplishment of one 

floating-point operation often requires a bunch of fixed-point instructions.  Eventually 

we learn that a complete version of the proposed coding scheme can not be achieved by 

simply transferring from a C program.  Solutions to overcome such a predicament 

include the employment of a processor with a faster instruction rate clock and/or the 

substitution of optimized assembly codes plus the incorporation of external memory.  

However, our primary goal in this study is to evaluate the feasibility of the proposed 

algorithm.  We therefore truncate this algorithm to make it executable on the 

ADSP-2181 anyway.  For example, the M-L tree search procedure is not conducted 

during the search of the multi-stage codebooks.  We also omit the pitch refinement 

subroutines that rectify the pitch contour and detect the GCI’s position.  From the 

experimental results, it is revealed that the above truncation helps us to save efforts on 

programming but inevitably result in the degradation of synthetic quality. 

In fact, as faster floating-point DSP chips are available by nowadays technology, a 

full version of the algorithm could be implemented without sacrificing the performance.  

In the future we expect to make this algorithm fully executable on a floating-point DSP 

processor (such as ADSP-21061 or 21062) that retains a faster instruction rate and larger 

memory space.     
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V.  CONCLUSIONS 

 
This paper describes a 1.4 Kbps GELP coder that employs a glottal excitation model 

for voiced speech and innovation sequences for unvoiced speech.  We formulate these 

two types of excitations as codevectors that are used to excite a synthesis filter.  Only 

one of these two excitation functions is active at any time.  The performance of the 

proposed coder is subjectively evaluated in comparison with the 2.4 Kbps LPC-10e 

(FS-1015) and 4.8 Kbps CELP (FS-1016) speech coders.   

We have developed a real-time version based on the ADSP-2181, which is a 16-bit 

fixed-point DSP processor integrated with 80 Kbytes on-chip memory.  Most of the 

algorithmic computation of this 1.4 Kbps GELP coder is implemented using the C 

language and then transferred into the assembly code.  In order not to exceed the limit of 

on-chip memory space, we truncate the algorithm particularly in the search of LSF 

codevectors and the determination of GCI's.  Such truncation not only reduces the 

required program memory but also accelerates the processing speed.  However, it also 

leads to noticeable degradation of perceivable quality.  We expect that a full version of 

the GELP coder could be made to run in real-time on a floating-point DSP chip with large 

memory.  Furthermore, improvement of the proposed coder may be achievable by 

incorporating a more accurate pitch estimator and a frequency-shaping noise source as 

well as tractable pulse dispersion.  Apparently, the increase of the computational burden 

can only be resolved by using a faster DSP chip.  
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