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摘 要

類似於短時間富立葉轉換，小波轉換提供了另ㄧ種信號處理的方法，特別的是它適合於空間及頻譜聚集性的分析。在本論文中，我們提出ㄧ個

低成本的二維雙正交離散小波轉換之超大型積體電路架構設計，藉由有效的安排計算排程及運用雙正交濾波器的對稱特性，因而得到硬體成本的最

小化。針對計算ㄧ個含L 長度的N ´ N二維影像而言，我們所提出的架構需花費近N 時脈週期，另外要求約2NL - 2N 的存儲單元、如為偶長度的濾

波器則需15L/8個乘法器、如為奇長度的濾波器則需15ëL/2+1û /4個乘法器，以及4(L-1)個加法器等計算單元硬體。

關鍵詞：離散小波轉換、超大型積體電路
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Abstract 

The wavelet transform, similar to the Short-Time Fourier Transform, furnishes an alternative approach to 

signal processing, especially suitable for the analysis of spatial and spectral locality. However, the 2-D wavelet 

transform needs the same enormous computation as their counterpart Fourier transforms. In this paper, we present 

a low-cost VLSI architecture for 2-D biorthogonal discrete wavelet transforms. Both the efficient arrangement of a 

computation schedule and the symmetric property of biorthogonal filters used in this architecture contribute to the 

hardware cost minimization. For the computation of an N  N 2-D image with a filter length L, this architecture 

spends near N 2 clock cycles, and requires about 2NL - 2N storage unit, 15L/8 multipliers for even-length filters or 

15L/2+1 /4 multipliers for odd-length filters, as well as 4(L-1) adders.  
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I. Introduction 

The wavelet transform (WT), similar to the Short-Time Fourier Transform (STFT), furnis hes an alternative approach to 

signal processing, especially suitable for the analysis of spatial and spectral locality [1]-[5]. The WT differs with the STFT in 

their time-frequency representations. By processing data with different window widths at variable scales, it thus overcomes 

the limitation of STFT whose time-frequency resolutions are fixed over the entire time-frequency plane. However, since 2-D 

DWT’s need the same enormous computation as their counterpart Fourier transforms, in order to meet the requirements of 

fast computation in many real-time applications, dedicated hardware implementations are necessary. 

Several VLSI architectures based on the separable approach for 2-D discrete wavelet transforms have been proposed 

[6]-[18]. For instance, Lewis and Knowles [6] firstly proposed a multiplierless 2-D architecture for the 4-filter-length 

Daubechies wavelet transform. Vishwanath et al. [7] presented a 2-D systolic-parallel DWT architecture that uses a 

combination of systolic and parallel filters. Chakrabarti et al. [8] devised many efficient architectures, such as parallel filters 

(in 1-D and 2-D), SIMD linear array, and SIMD multigrid architectures, which utilize parallel structures to implement the 

existing pyramid [1] and “à trous” [9] algorithms for the DWT and the continuous WT, respectively. Following the above 

works, Denk and Parhi [10] presented an implementation of the 2-D DWT based on lapped block processing techniques. A 

parallel-pipelined VLSI array architecture for the 2-D DWT has also been proposed by Chuang and Chen [11]. Rumian [12] 

described a practical implementation of the 2-D DWT decomposition based on a pair of 1-D QMF FIR filters and two FPGA 

circuits. Recently, Chen and Bayoumi [13] presented a systematic synthesis approach for scalable systolic array architecture 

for the 2-D DWT based on the data dependence analysis and linear index space transformation. Later, to improve the 

foregoing architecture, Limqeco and Bayoumi [14] again proposed an efficient semi-systolic array architecture for 2-D 

discrete wavelet transforms. This architecture hold the same amount of computational unit as the systolic array architecture, 

but its communication routing has lower complexity because the data transfer between processing elements is limited to its 

neighbors and data to be stored within the processor’s local memory. More recently, Sheu et al. [15] proposed a lower 

hardware cost and less memory VLSI architecture for the separable approach of 2-D DWT, which provides a low on-chip 

memory needed. Paek et al. [16]-[17] presented a two -stage semi-recursive VLSI architecture for the 2-D DWT. 

All the architectures described above have to consider the trade-off between the cost of their computation units and the 

time spent for computing 2-D DWT’s. To alleviate this problem, we present a VLSI architecture for 2-D DWT’s, which owns 

low-cost computation units and fast computation time. We mainly apply an efficient computation schedule and take 

advantage of the symmetric property of a biorthogonal filter bank in our proposed architecture to reduce its hardware cost 

needed. The purpose of our study is aimed at me eting the requirement of low-cost hardware implementation for the 

computation unit, so that we can use FPGA or single -chip VLSI to implement the hardware of 2-D DWT’s.  

II. 2-D Discrete Wavelet Transforms 

In the separable approach, the 2-D wavelet transforms can use cascading 1-D wavelet transforms to perform 

row/column -major transform and then column/row-major transform. Assume that the input source is an image, then the 

image can be first decomposed into a pair of highpass and lowpass subimages by applying a 1-D wavelet transform in the 

row dimension. Then, the highpass and lowpass subimages with downsampled outputs can be further decomposed in the 

column dimension into a new pair of coarser lowpass and highpass subimages, respectively, by using another 1-D wavelet 

transform. Therefore, the four resultant sub-images in the output contain information of different significance, and the size of 

each sub-image is reduced to a quarter of the original image after the decomposition processing. In other words, we obtain 

now four outputs HH, HG, GG, and GH, where the sub-image HG is the output data via the lowpass row filter H and the 

highpass column filter G, and the other HH, GG, and GH sub-images are generated similarly. Further analysis of the image 

will decompose the subimage HH into four new sub-images, and so on, until the coarsest level of sub-images are achieved. 

One’s decomposition with two resolution levels is shown in Fig  1.  

As described above, the decomposition results for an image using 2-D DWT are shown in Fig  2. The left of the figure 

corresponds to its individual scale after three levels of 2-D DWT decomposition; and the right of the figure is a practical 

example for the Lena image. Through such decomposition, the highest-frequency components of the entire image are 

concentrated in the GG1 that represents the finest subimage in the image. In contrast with the GG1, the lowest-frequency 
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components of the entire image are concentrated in the HH3 that shows the coarsest subimage in the image. Thus, the image 

is classified into various resolution levels corresponding to its different scales. Due to these properties, the 2-D discrete 

wavelet transform is frequently used in many applications for image processing, such as image compression, image 

recognition, edge detection, image de-noising, and so on.    

However, since the amount of the 2-D DWT computation is similar to other classical 2-D transforms, such as the FFT or 

DCT, the computational complexity of the 2-D DWT is also too expensive. To satisfy the requirements in real-time image 

processing such as on-line videophone and videoconference, a dedicated hardware implementation is necessary. In the 

following sections, we will propose a low-cost VLSI architecture for the 2-D DWT computations. 

III. 2-D DWT Architectures 

1. Proposed VLSI architecture 

The proposed VLSI architecture for 2-D biorthogonal DWT is shown in Fig  3. The architecture consists mainly of four 

parallel filters and one storage-unit. Here, the four filters are responsible for performing the row and column filterings, 

respectively. The storage unit is used for storing the row filtering outputs, in which data will be transposed to serve as the 

input of the column filter. By using an efficient computation schedule (as described in the next subsection) to compute 

DWT’s on-the-fly, the storage unit between resolution levels can be eliminated. Moreover, when we use a delay-line scheme 

to implement the storage unit, the delay-line used in the last filter-tap can also be eliminated because these input samples 

were already available at the input terminal and we do not need to store them in a buffer. As a result, the size of the storage 

unit required in our proposed architecture is 2NL-2N = 2N(L-1) for storing both highpass and lowpass filterings, where N is 

the row/column size of an image and L is the filter length. 

2. Computation Schedule 

A computation-schedule table illustrating the three-level 2-D DWT computations for an N × N image is shown in Table 

1. In the table, Hi and Vi represent the horizontal and vertical filtering computations at the resolution level i, respectively. For 

simplicity, only the Vi computations of a single vert ical filter (may be VF1 or VF2) are shown in this table. This schedule 

table is generated from the data dependence analysis of the separable 2-D DWT computations. A horizontal filtering 

computation is shown in the upper side of a grid in the table and a vertical filtering computation is shown in the lower side. 

An upper- or a lower-sided blank grid represents no filtering computation there. Note that each of the last computation points 

of all levels will be wrapped to its next row except for H1. For instance, the last computation points of each row of H2 are 

wrapped to grid (2, l), for l = 2, 4, …, N; and the last vertical computation points of each column of V1 appear at grid (0, l), 

for l = 2, 4, …, N. Therefore, all the resolution levels of computations shown in this schedule table are interleaved with the 

exact spacing of the first-level.   

The idea of this computation schedule is that the generation sample is computed if all its input samples are available and 

the computation unit is idle currently. For example, the horizontal computation H2 at grid (1, 6) is generated because the 

vertical computation V1’s at grids (1, 2) and (1, 4) are available and the computation unit of the horizontal filtering (HF1) is 

idle.  

From the above table, the total computation time for computing the three levels of N × N 2-D DWT is N2 + 6 ≈ N2 clock 

cycles. Thus, this computation schedule is efficient because only a small amount of extra DWT computations is needed, 

which is far less than the existing algorithm [7]. In addition, as mentioned earlier, when using our proposed computation 

schedule, not only the storage buffer between resolution levels for the next level of DWT computation, but also the delay line 

used in the last filter tap can be eliminated. Therefore, the size of the storage units used in our proposed architecture is further 

reduced. 

3. Filter Structure 

To further reduce the hardware cost of the computation unit, we design an efficient filter structure for the biorthogonal 

filter bank, as shown in Fig  4. Here, D is a delay element. Symbols g and h are highpass and lowpass coefficients, 

respectively. The biorthogonal filter bank has the symmetric property, e.g. coefficients g0 = g4, g1 = g3, h0 = h4, and h1 = h3 
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for a five-tap filter as shown in Fig. 4, thus we can reduce about half of the multipliers needed. Based on this filter structure, 

our proposed architecture can further reduce the hardware cost of its computation units, such that it is suited for FPGA or 

single-chip VLSI implementation. 

IV. Performance Evaluation 

The performance evaluation of various architectures is summarized in Table 2, where N denotes the number of 

row/column input samples (8-bit data width) and L is the filter length. Period is defined as the minimum time between the 

first input of one computation and the first input of the next computation. Assuming that multipliers of 16×16-bit precision 

are used for all the other architectures in the table. For a better implementation, we optimize the precision requirements of the 

multipliers in our proposed architecture. That is, the multipliers used in the filter HF1 need only a precision of 8×16 bits, 

while the ones used in the remaining filters (HF2, VF1 and VF2) need a precision of 16×16 bits. The reason is that HF1 

performs only the computation of input samples, thus it requires lower precision than other filters. In total, the number of 

multipliers required in our architecture becomes 8
15

8
3

222
LLLLL =+++  for even-tap filters and 

     1113 24
15

24
3

2 +=+++ LLL  for odd-tap filters. Clearly, from Table 2, our proposed architecture requires a smaller 

number of computation units and computation time than other existing architectures. 

V. Conclusions 

A low-cost VLSI architecture for 2-D biorthogonal DWT was described in this paper. This architecture with its efficient 

computation schedule can reach about a period of N2. We also designed a low-cost filter structure and optimized the precision 

requirement of processing elements to reduce the hardware cost. Since the architecture has fast computation time and 

low-cost hardware, it is suited for single -chip VLSI implementation, especially for the rapid prototyping using FPGA. In 

addition, it can also be applied very well to many real-time video/image applications, such as MPEG-4 and JPEG 2000. 
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Fig 1  Two resolution levels of separate implementation for 2-D DWT decomposition. 
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Fig 2  (a) Octave-band decomposition of an image. (b) Lena-image decomposition. 
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Fig 3  Proposed architecture for 2-D DWT. 
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Fig 4  Five -tap high/low filter structure. 

 

 

 

Table 1  A three-level computation schedule table.  
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Hi: The ith level of horizontal filterings.            Vi: The ith level of vertical filterings.
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Table 2 Comparisons of various 2-D biorthogonal DWT architectures for even-tap filters. 

Architectures MAC’s Multipliers Adders Registers Period 

Direct Approach [7] L - - 2N  4 2N  

Systolic-Parallel [7] 2L 4L 4L 2NL + 4N NN +2  

Parallel Filter [8] - 4L 4(L-1) 2NL + N NN +2  

Systolic Array [13] 3L - - 2NL NN +2  

Semi -Systolic [14] - 3L 3(L-1) 29N, for L=6 NN +2  

Parallel Pipelined [15] 5L/2 - - 2N NN +2  

Semi -Recursive [17] - 7L/2 4(L-1) 4NL NN +2  

Ours - 15L/8 4(L-1) 2NL - 2N ≈ 2N  
 

 

 


