
Structural Design for a 1.6 Kbps GELP Speech Coder 

- 69 - 

宜蘭大學工程學刊(2007) 
第三期第 69～86 頁 

Structural Design for a 1.6 Kbps GELP Speech Coder 

Hwai-Tsu Hu1  Yong -Nan Chen2 

1. Professor, Department of Electronic Engineering, National Ilan University 
2. Technical Manager, Terasic Technologies Inc. 

Abstract 

This paper presents a structural design for hardware implementation of low-bit-rate 
speech coding.  The processing algorithm emerges from the traditional pitch-excited linear 
prediction vocoder with incorporation of glottal-source properties.  To make the coding 
algorithm realizable, constraints are imposed on the complexity of computational modules as 
well as the need of arithmetic operations.  Nonetheless, the simplified algorithm is still 
capable of carrying out 1.6 Kbps speech coding with acceptable quality.   

We have gone through algorithm modification, fixed-point analysis, hardware design, and 
circuit synthesis by making use of various design tools.  The hardware design, described by 
using Verilog-HDL, is compiled and verified on an FPGA-based DSP board. Our results 
confirm that the proposed architecture works quite well.  As this architecture needs not 
consume many hardware resources, it is suitable for single chip implementation. 
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摘 要 

本文針對低位元率語音編碼之硬體實現提出結構性設計，負責程序處理之演算法源自於傳統

的脈衝激源線性預測語碼器，另摻入聲源之特性。為了讓編解碼演算法得以硬體實作，諸如計算

模組的複雜度與算數運算的需求均加上許多限制，然而簡化後的演算法仍能執行 1.6Kbps 語音

編解碼並輸出可接受之音質。 

我們藉由多樣設計工具，經歷了演算修正、定點數分析、硬體設計、電路合成等過程，最後

以 Verilog 硬體描述語言設計出之電路硬體是在擁有 FPGA 的 DSP 開發板進行編譯及驗證，所得

結果證實這套架構的工作效能。由於該架構不需耗用過多硬體資源，其實是非常適合以單晶片實

現。 

關鍵詞：語音編解碼、VLSI 構造、硬體實現 
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1. Introduction 

In recent years, low-bit-rate speech coding has 
drawn much attention due to its wide applications to 
telecommunications and information appliances.  
The phrase “low bit rate” is particularly used to 
signify the reduction of transmission bandwidth and 
memory storage, which in turn promotes the 
efficiency of speech-related devices and facilities.  
Nowadays prevailing products consist of the cellular 
handset, videophone, VoIP, dialogic system, digital 
recorder, and digital answering machine, etc.  In 
order to economize the above-mentioned commercial 
products, a plausible choice would be the exploitation 
of chip design so that all processing requirements are 
accomplished by integrated circuits and control logics.  
Nevertheless, the mapping of a coding algorithm into 
hardware is a work-intensive process, since the 
designer must understand how to adjust the 
underlying algorithm subject to many constraints.  
Generally encountered constraints include the latency, 
throughput, timing characteristics and the complexity 
of the algorithm.  For ASIC-based implementation a 
well-developed algorithm should also be 
parameterizable.  In other words, the algorithm 
should be coded into modules using a hardware 
description language like VHDL and Verilog.  
Furthermore, to make the developed algorithm 
portable to a structural design with limited hardware 
resources, it is essential for us to trim the algorithm as 
much as possible and to take away complicate 
operations providing the resulting performance is still 
acceptable.   

2. Design procedure 

In this paper, apart from the algorithmic issue, 
the design and implementation of the VLSI 
architecture is also our concern.  The steps leading to 
hardware implementation of speech coding are as 
follows.  First, the algorithm is developed and 
verified within the working environment of Matlab.  
We then translate the algorithm into a fixed-point 
version using the C++ programming language.  A 
new data type based on the size of bits and the 
position of the radix point is created to suit the need of 
binary arithmetic.  Hence different types of numeric 
values are convertible via casting operators.  
Arithmetic operators are reconstructed accordingly to 

manage fixed-point operations.  As we proceed with 
the algorithm flow, the radix point of the variables is 
dynamically allocated to preserve the most significant 
bit.  For some particular variables we have reserved 
few bits to avoid overflow during intermediary stages. 

The foregoing fixed-point analysis ensures the 
portability of the developed algorithm to ASIC-based 
implementation.  As we attempt to shorten each 
design cycle, the hardware system is developed based 
on a DSP development board.  This board has an 
FPGA device integrated with an AD/DA converter 
responsible for audio sampling and playback.  We 
use the Verilog language to create the required 
processing components and control units.  
Subsequent functional simulation and logic synthesis 
are accomplished by resorting to the ModelSim 
(which is a Verilog simulator) and the Quartus II 
(which is a synthesis tools distributed by Altera Inc.).  
For a complicated system such as our speech coder, 
timing simulation and analysis is crucial as well.  
Eventually, the in-circuit evaluation is carried out on 
the DSP board once the FPGA device is properly 
configured.  The above procedures for algorithm 
development, computer simulation, and hardware 
verification are repeated until we reach satisfying 
results.  

Consequently, this paper not only aims at the 
development of an efficient algorithm but also verifies 
its feasibility via hardware implementation using an 
FPGA.  The rest of this paper is organized as follows.  
Following the discussion of the design procedure, 
both the speech production model and the bit 
allocation for the proposed coding scheme are 
described in Section 3.  Sections 4 and 6 present the 
architectures for speech analysis and synthesis 
respectively, while the spectral quantization is placed 
in between (namely, section 5).  The performance 
evaluation of the coding algorithm and architecture is 
discussed in Section 7. Concluding remarks are finally 
given in Section 8. 

3. Speech production model 

We adopt a model called glottal excited linear 
prediction (GELP) [1]-[3] to incorporate glottal 
properties into the conventional linear prediction (LP) 
coder.  As shown in Fig. 1, this model inherits the 
fundamental structure of the LP coder [4], which is 
developed based on the source-filter theory.  The 
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source model switches between the voiced and 
unvoiced types according to the voicing condition, 
while the all-pole synthesis filter renders the 
composite spectral characteristics of the glottal flow, 
vocal tract transfer function, and lip radiation. 

Given that the speech signal is sampled at 8 KHz 
with 8-bit resolution, we update the analysis frame at 
a rate of 200 samples with an overlap of 56 samples 
for consecutive frames.  Table I presents the bit 
allocation for the speech coder.  

4. Architecture for speech 
analysis 

Speech analysis with respect to the speech coder 
is equivalent to extracting modeling parameters such 
as the pitch, gain, and filter coefficients.  Techniques 
constituting the framework of speech analysis thus 
involve pitch detection, gain determination, and 
estimation of filter coefficients.  

There are five important modules that constitute 
the hardware for speech analysis.   As shown in Fig. 
2, apart from the buffer, one module is designed to 
detect pitch periods while the remaining three are used 
to derive spectral parameters. 

A. Data Buffer and Memory Requirement 

As each analysis frame consists of 256 speech 
samples in length, we reserve a memory space of 400 
bytes to achieve a double-buffer processing of speech 
data.  The reserved memory is split into two parts of 
equal size.  Speech samples captured by the AD 
converter are assigned to the designated memory in a 
circulating manner.  A buffer is full once it collects 
200 samples.  The last 56 samples in the alternative 
buffer and those in the current buffer then form a 
frame of 256 samples for analysis.  Fig. 3 illustrates 
the double-buffer scheme. 

As will be clear later, we impose a 1st-order 
highpass filter on the speech signal before performing 
LP analysis.  Additional memory space is required if 
we want to reserve intermediate outcomes.  To avoid 
unnecessary memory consumption, we instead apply a 
1st-order filtering operation to the autocorrelation 
function.  Given that the 1st-order filtering process is 
expressed as  

)1(925.0)()( −−= nsnsny       (1) 

where s(n) denotes the speech signal, and y(n) is 
the filtered output that is also regarded as the 

intermediate result.  Multiplying each side of Eq. (1) 
by itself with a different index and taking the time 
average over the underlying frame result in  
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where )(kRyy and )(kRss  correspond to the kth-lag 

autocorrelation function of y(n) and s(n), respectively.  
It turns out that an extra lag of skRss )'(  is 
indispensable in order to compute skRyy )'( .  

However, since the number of multiplication required 
by the extra lag autocorrelation function is exactly the 
same as that required by the 1st-order filtering, the 
need of an extra autocorrelation function does not 
mean the necessity of additional computation.  Thus, 
Eq. (2) is considered an alternative approach to 
acquiring the autocorrelation function of a filtered 
signal without any demand for memory space to store 
the intermediate result. 

B.  Autocorrelation 

The most time-consuming computation lies on 
the computation of the autocorrelation function.  To 
accelerate the processing speed, we deploy ten 
multiplier-accumulators (MACs) to attain the 
autocorrelation sequence in parallel.  Fig. 4 presents 
the block diagram for the computation of 
autocorrelation functions.  Since speech samples 
captured from the AD converter are trimmed down to 
have 8-bit resolution, the expenditure of hardware 
resources is still under a reasonable level. 

C. Levinson-Durbin Recursion 

Once the autocorrelation function is available, a 
Levinson-Durbin recursion module shown in Fig. 5 is 
brought in to derive LP coefficients.  The involving 
computational units consist primarily of multiplexers 
and primitive arithmetic operators, which are designed 
to cope with data of different resolution.  A 
by-product associated with the Levinson-Durbin 
recursion module is the easy derivation of the gain 
factor, which is used to control the intensity of 
synthetic speech.  As suggested by Makhoul [5], we 
computed the gain, termed G, by referring to the 
linear prediction relation. 

∑
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where ka  denotes the kth LP coefficient, and p  

stands for the LP order.  While the above formula 
necessitates a square root operation, a fast algorithm 
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developed by Tommiska [6] is employed to execute 
the process.  The adopted square-root operation 
needs only n clock cycles for 2n-bit wide numbers.  
In Eq. (3), the value within the square root operator is 
just the variable E (variance of prediction errors) 
appearing in Fig. 5.  This particular value is 
simultaneously available right after completing the 
linear prediction analysis of speech signals.  

D. Conversion from LP Coefficients to LSP 
Parameters 

The forth module focuses on the conversion from 
the LP coefficients to the line spectral pair (LSP) 
parameters.  Given that the LP coefficients are 
available through the Levinson-Durbin iteration, two 
auxiliary polynomials are formed by adding and 
subtracting the LP transfer function to its reversed 
system.  The angles of the roots derived from these 
two polynomials are known as the LSP parameters.  
Unlike many other algorithms that employed iterative 
procedures to find the roots, we had deliberately 
reduced the prediction order down to 9, thus allowing 
us to adopt a closed-form solution to pursuit the roots.  
More specifically, we utilize a 1st-order highpass 
filter in combination with an 8th order LP filter to 
model the spectral characteristics.  The 1st-order 
highpass filter is set as Eq. (1) to emphasize the 
high-frequency region of spectrum, while the 
8th-order LP filter accounts for the formant structure.  
Assuming that )(zA  is the transfer function of the 

8th order linear predictor defined as 
8

8
2
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1
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Under such a condition, the auxiliary symmetric 
and anti-symmetric polynomials, denoted as )(zP  
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Notice that either )(zP  or )(zQ  can be 

rewritten as the following form: 
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where ωcos21 =+= −zzx , and ω  denotes the 

corresponding line spectrum frequency.  We rewrite 
the expression within the brackets on the right hand 
side of Eq. (6) as 

0234 =++++ dcxbxaxx        (7) 

As demonstrated in [7], the above equation can 

be solved as follows.  First, let 
2
aE = , 

1
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one of the roots for the resolvent cubic equation 
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Then, the four roots of Eq. (7) become 
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Fig. 6 illustrates the required hardware resources 
for the root-solving procedure. 

The above-mentioned root-solving module 
demands a lot of square-root operations to derive the 
cosine function of the LSP parameters, termed 

]3[~]0[clsp  in Fig. 6.  Again, the digital circuit 

devised by Tommiska [6] is employed to fit for the 
task.  In fact, the square-root component has become 
the major part of the arithmetic unit shown in Fig. 6.  
Other crucial constituents consist of two 
adders/subtractors, a multiplier, a divider, a 
comparator, and a logic circuit for sorting the 
sequence of parameters.  Fig. 7 depicts such a 
structure. 

E. Pitch Detection 

The last module for speech analysis is dedicated 
to pitch detection.  For LP-type vocoders, the pitch is 
often estimated by examining the autocorrelation 
function of the analysis frame.  However, 
computation involving the correlation function is 
always burdensome, especially when the range of the 
time lag extends from 21 to 147 considered in our 
case.  It is definitely unwise to deal with this kind of 
computation in a parallel manner since the 
corresponding hardware demands 127 MACs.  We 
therefore resolve the difficulty by treating the 
autocorrelation function as the comparison between 
the sign bits extracted from a lowpass filtered signal 
and a shifted version of themselves.  In practice, the 
sign bits of all samples in a frame can be collected as 
a lengthy word.  The correlation function can be 
attained by first taking the bit-wise equivalence (or 
called the exclusive-NOR) operation and then 
counting the number of 1’s.  In fact, this kind of 
approaches was considered useful in early days when 
the speed of processors is slow, but is obsolete 
nowadays.  Ironically, it suits the VLSI design very 
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well.  The accuracy of the estimated pitch is 
somewhat degraded due to the degeneration of speech 
samples, but can be ameliorated a lot by incorporating 
with supplementary decision logics.  

In our coding scheme, the voicing classification 
and pitch detection is formulated as the following.  
Let )(kmc  denotes the number of 1’s accumulated 

from the outcome of the bit-wise equivalent operation 
when the time lag is k .  We multiply )(kmc  by a 

scaling factor )002.01( k+  to render a vale more like 

the unbiased autocorrelation function, i.e., 
)()002.01()(~ kmkkm cc +=   Supposed that cp  

happens to be 
{ }14721)(~maxarg ≤≤= kkmp ckc .     (10) 

We regard cp  as the pitch period in case the 

frame is claimed as voiced speech.  However, the 
analysis frame is categorized as the unvoiced type if 
either one of the following criteria is met. 

(i) 240)0( <ssR      (11-1) 
(ii) ( ))0(3.0)1( ssss RR <  & ( )185)(~ <cc pm  

(11-2) 
(iii) ( )ppc ppp 15.0>−  & ( )160)(~ <cc pm   

(11-3) 
where Pp  denotes the pitch period obtained from 

the previous frame.  In Eq. (11), criterion (i) is used 
to assess the energy level of the speech segment, 
while criterion (ii) is adopted to examine the spectral 
tilt.  On the other hand, criterion (iii) is aimed at the 
discrimination of unvoiced conditions against 
abnormal pitch variations.  We have tried out these 
conditions for a variety of speech utterances.  The 
resulting performance is quite satisfactory.     

To summarize this section in brief, our 
computational efficiency in the analysis phase 
originates from algorithmic modifications in manifold.  
Firstly, the speech ensemble is degenerated into a 
lengthy word, within which each bit represents the 
sign of a speech sample.  As a result, the 
autocorrelation function necessitated by the pitch 
detection is substituted by a bit-wise equivalence 
operation between two words followed by summing 
up the number of 1’s.  Secondly, in contrast with 
most vocoders that employed a 10th-order LP analysis, 
the proposed coder adopts an 8th-order predictor 
cascaded by a 1st-order emphasis filter. Because the 
order directly reflects the computational requirements, 
such an arrangement not only makes the derivation of 
LP coefficients easier but also reduces the amount of 

bits required to encode spectral properties.  
Moreover, the choice of an 8th-order predictor allows 
a simple closed-form approach to derive the LSP 
parameters. 

5. Spectral quantization 

As indicated by Table I, there are 70% of bits 
reserved for spectral quantization.  It is therefore 
advantageous for us to devote one section to this issue.  
The conversion between the LP coefficients and LSP 
parameters is essential in consideration of fewer bits 
for spectral quantization. The popularity of LSP 
parameters for spectral representation results from its 
superiority in stability check, excellent interpolation 
properties, and relative insensitivity to quantization 
errors [8]. Since the cosine functions of LSP 
parameters are directly applicable to the synthesis 
filter, we encode them using a 28-bit scalar quantizer 
with bits allocated according to the sequence, 
{4,3,4,3,4,3,4,3}. Notice that the predictive vector 
quantization is not considered here because it 
demands a great deal of computation and memory 
space.   

To obtain the optimal nonuniform quantizer, the 
well-known generalized Lloyd algorithm is used [9]. 
Our training data consist of 68314 speech frames 
extracted from Mandarin sentences uttered by 10 
speakers (5 males and 5 females).  Another 22112 
sample frames extracted from a different set of 
speakers and sentences are prepared for verifying the 
competence of the trained quantizer.  Table II 
presents the results in terms of spectral distortion 
between the actual and quantized cosine function of 
LSP parameters.  It is shown that the interlacing 
strategy for bit assignment comes up with an average 
SD of 0.93 dB.  Among the distortion measures from 
all the training data, only 1.45% of them exceed 2 dB 
and 0.0029% are beyond 4 dB.  In particular, we 
observe no significant difference for the SD’s 
measured either inside or outside the training set.  
Apparently, this scalar quantizer achieves a 
transparent quantization [10] of spectral information 
for sure.   

It ought to be noted that the bit assignment plays 
an important role in reducing the average spectral 
distortion.  We have attempted a variety of bit 
allocations other than }3,4,3,4,3,4,3,4{ , but ended up 

with worse results.  Such consequences can be best 
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understood by inspecting Table III, which indicates 
the SD’s contributed by each individual parameter.  
In the case under study, only one parameter was 
quantized at a time using either 3 or 4 bits and the 
other parameters remain intact.  It is evident in Table 
III that not only the SD measures with odd-indices are 
larger than that with adjacent even indices, but also 
the improvement is relatively significant for the 
quantization of odd parameters when the number of 
bits is increased from 3 to 4.  This suggests assigning 
more bits to quantize odd-indexed cosine function of 
LSP parameters. 

6. Architecture for speech 
synthesis 

Synthetic speech is the result attained by feeding 
the excitation (either the glottal pulse or random noise) 
to a synthesis filter.  The synthesis of unvoiced 
speech is straightforward since the excitation is 
accessible from a random number generator. The 
synthesis of voiced speech is rather complicated 
because we have to modulate the pitch period apart 
from replicating the glottal features.  

In light of the speech production model described 
in Fig. 1, the architecture for hardware 
implementation is illustrated in Fig. 8.  It consists 
mainly of a white noise generator, a glottal pulse 
codebook, three interpolators, a gain codebook, a LSP 
synthesis filter, and a LSP parameter decoder.   

The format of the input data utilized in the 
proposed architecture is consistent with that listed in 
Table I.  For each frame of 25 ms, a packet of 40 bits 
is converted to modeling parameters before 
synthesizing into 200 speech samples.  The voicing 
parameter is used to determine whether the excitation 
should be drawn from the glottal pulse modulator or 
from the white noise generator.  The gain of the 
excitation is quantized based upon a codebook of a 
5-bit size.  We multiply the selected excitation 
source by the decoded gain to adjust the vocal 
intensity.  

As we use 28 bits to encode the cosine functions 
of eight LSP parameters, an associated decoder is 
required prior to loading into the synthesis filter.  
Also, an interpolation scheme is employed in our 
proposed architecture to smooth the transition of 
speech synthesis.  All the components are illustrated 

in the following subsections. 

A.  Glottal Pulse Codebook 

The glottal pulse codebook contains a pulse-like 
waveform with glottal phase characteristics.  Steps of 
establishing the glottal codebook are as follows.  
First, a prototype of the glottal pulse for one pitch 
period is extracted from the prediction residual of a 
sustained vowel /a/.  Next, this prototype is 
thoroughly decolorized by unifying its magnitude 
discrete Fourier transform (DFT) while leaving the 
associated phase DFT unchanged.  The ensemble 
reserved in the codebook is obtained by circularly 
shifting the main excitation to the beginning position.  
Since the range of pitch period presumably varies 
from 21 to 147 samples, we adopt an overlap-and-add 
approach [11] to adjust the pitch period by   
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where )(iv  is the resulting excitation, )(iw  

represents the prototype of the glottal pulse with a 
length of L , and  N  denotes the targeted pitch 
period.  In Eqs. (11-2) and (11-3), )(1 iw  and 

)(2 iw  can be regarded as the )(iw  weighted by 

forward and backward triangular windows followed 
by zero-padded at the end and beginning positions, 
respectively.  Fig. 9 illustrates the process for pitch 
adjustment.   

B.  Random Noise Generator 

The hardware implementation of a pure random 
noise generator is very difficult.  A pseudo random 
noise generator is commonly used instead.  Here we 
adopt the linear feedback shift register (LFSR) to 
produce a random sequence.  Since each synthesis 
frame only needs to fetch 200 points, the maximal 
length sequence does not require a large value to meet 
the characteristics of randomness.  The LFSR 
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structure thus suits our purpose very well for 
generating the noise excitation for speech synthesis.    

C. Interpolator 

The interpolator is employed to smooth the 
transition across frames.  When the synthesis steps 
forward in a frame, modeling parameters are 
interpolated according to the current location by 
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where φ and ϕ  denote the decoded parameters of the 
previous and current frames, respectively. θk is the 
interpolated parameter for synthesis in the kth 
subframe.  

To simplify the complexity of hardware circuitry, 
we modify the original weighting values of Eq. (12) 
by using integer manipulation rather than regular 
arithmetic.  That is, we replace the weighting values 
{0.875, 0.625, 0.375, 0.125} by its fractional 
counterparts {7/8, 5/8, 3/8, 1/8}.  This change will 
allow the interpolation performable on a simple 
hardware circuit, since it only requires fundamental 
operations such as shifting and summation.  For 
instance, the multiplication of 1/8 can be achieved by 
arithmetically shifting the input value to the right by 3 
bits, and the multiplication of 7/8 is obtainable by 
subtracting such a shifted version from itself.   

D. Gain Codebook 

The gain codebook used in our proposed speech 
synthesis allocates 32 (= 52 ) words in memory. This 
codebook reflects the power of the synthesized speech. 
For simplicity, it is implemented by using a lookup 
table within a ROM.    

E.  LSP Synthesis Digital Filter 

In LSP speech synthesis, a digital filter is 
constructed based on the LSP parameters [12].  Fig. 
10 illustrates the signal flow graph of the LSP 
synthesis filter of order 8.  It is readily seen that such 
a structure is very suitable for hardware 
implementation due to its regularity.  This particular 
filter consists of 8 trunk circuits.  The 
z-transformation of each trunk circuit appears to be 

211 −− +− zzci , where iic ωcos2=  and iω  is the 

ith LSP parameter.  Since this new circuit holds its 
regularity, the whole LSP computation is 
accomplishable by using the same hardware structure 
except for the final summation (see Fig. 10).      

7. Performance evaluation  
A mean opinion score (MOS) listening test is 

performed on a total of sixteen utterances gathered 
from 4 speakers (2 male, 2 female), each delivering 
four speech sentences.  Apart from the synthetic 
results of the proposed coder, the outcomes from the 
2400 bps LPC-10e vocoder (FS-1015) [13], 4800 bps 
CELP coder (FS-1016) [14], and 2400 bps MELP [15] 
coder are also provided as three baselines.   Since 
the synthetic speech signals obtained from the other 
coding schemes are in floating-point format, the 
Matlab version of the proposed algorithm is adopted 
for comparison.  There are 18 listeners participating 
in the MOS test.  During the test, every listener is 
equipped with a pair of high-fidelity earphones, which 
are connected to the sound card on a PC.  A program 
is designed to play back the speech stimuli in random 
order and to collect the answer picked by the listeners.  
The results are shown in Table IV.  It is to our 
surprise that the mean opinion scores of the 
synthesized utterances for the males are inferior to 
that for the females for all kinds of speech coders.  
According to the listeners’ opinions, this is probably 
due to the fact that the vocal quality of one male 
sounds a little boring.   As expected, the MELP 
coder holds the best average score, followed by the 
CELP coder.  The proposed coding scheme is 
slightly worse than the LPC-10e vocoder.  We 
believe that the faults in our proposed coder are 
mostly attributable to the occasional errors in pitch 
detection and the over-simplification in spectral 
characterization.  Although the problems are 
generally ameliorable by means of more advanced 
techniques, the resolutions are often accompanied 
with the increase in computational burden.  Since 
there always exists a tradeoff between algorithmic 
complexity and synthetic quality in concern with 
hardware implementation, a wise strategy would be 
the development of a reconfigurable system inside 
which each module is designed subject to hardware 
specifications. 

Besides algorithm development, the functional 
analysis of the architecture for speech coding has been 
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justified by using Verilog HDL.  The obtained 
outcome of the Verilog simulator does not deviate 
from the fixed-point analysis based on the C++ 
program.  Such a result evidences the competence of 
the proposed architecture.  Nevertheless, the 
fixed-point rendition of our speech coder seems to 
suffer degradation attributable to numerical round-offs 
and truncation errors.  Amelioration of such 
deficiency is possible at the cost of increasing size in 
bits.  To further examine our proposed architecture, 
we try it out on a DSP development board mounted 
with an FPGA device containing approximately 
1,500,000 gates counts. After completing the 
hardware compilation, we find that the proposed 
architecture required approximately 16,733 logic 
elements to synthesize the intended functionality, 
while a single such FPGA offers 51,840 logic 
elements in totality.  About 85% of the spent 
hardware resources are ascribable to speech analysis.   

8. Conclusion 
A hardware-oriented algorithm with its hardware 

implementation for speech coding at 1.6 Kbps has 
been presented in this paper.  To make the developed 
algorithm suitable for chip design, we have trimmed 
the algorithm and taken away complicate computation.  
The performance of the proposed 1.6 Kbps speech 
coder has been subjectively evaluated.  The 
preliminary results show that our proposed coder is 
capable of attaining an acceptable quality close to that 
of LPC-10e.  

We have gone through algorithm modification, 
fixed-point analysis, hardware design, and system 
verification by making use of several development 
tools.  It is confirmed that the resultant algorithm is 
realizable using fundamental arithmetic and bit-wise 
operations.  The only exception is the square root 
function, which is nonetheless transferred into a series 
of bit-wise shifts and comparisons.  The output 
observed in the simulation of Verilog modules 
consists with our fixed-point analysis.  However, the 
fixed-point rendition may suffer quality degradation 
due to round-off errors.  Further investigation is 
required in order to determine how to resize 
parameters in the module so that the perceived 
distortion can be effectively reduced. 

Since our proposed architecture only requires a 
moderate amount of hardware resources, it is suited 

for the ASIC or FPGA implementation.  Such an 
architecture is appropriate for the design of electronic 
devices which demand voicing interfaces, such as 
those previously mentioned in the introduction.  
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Table I : BIT Allocation FOR THE PROPOSED 1.6 KBPS SPEECH CODER 

Sampling Rate 8 KHz 
Frame Rate:  25 ms (200 samples/frame). 
Parameter bits/frame 
Voicing & Pitch  7 
Gain 5 
Spectrum 28 
Total 40 

 

 

 

Table II:  Spectral distortion of the scalar quantizer with respect to two different bit allocation 
strategies 

Outliers (%) 
Bit allocation Data set Spectral 

Distortion [dB] 2-4 dB > 4 dB 

within training 0.934 1.45 0.0029 {4,3,4,3,4,3,4,3} 
out-of-training 0.937 1.38 0.0000 
within training 1.005 2.91 0.0498 {4,4,4,4,3,3,3,3} 
out-of-training 1.078 4.18 0.0814 

 

 

 

 

Table III:  Influence due to quantization with respect to each individual cosine function of line 
spectral frequency 

Parameter 1st 2nd 3rd 4th 

Quantization  3 bits 0.360 0.279 0.396 0.378 
error (dB) 4 bits 0.181 0.149 0.206 0.193 
Improvement due to an 
extra bit [dB] 0.179 0.130 0.190 0.185 

 
5th 6th 7th 8th 

  0.416 0.357 0.385 0.264 
  0.216 0.184 0.200 0.136 
 0.200 0.173 0.185 0.128 

 
 
 



國立宜蘭大學工程學刊(2007) 

- 80 - 

 

 

 

Table IV:  MOS’s with respect to the speech synthesized by FOUR different SPEECH coders 

 Proposed 
1.6 Kbps 
GELP 

2.4 Kbps 
LPC-10e 

4.8 Kbps 
CELP 

2.4 Kbps 
MELP 

Male  1.958 2.035 3.139 3.681 

Female 2.493 2.861 3.569 3.771 

Overall 2.226 2.448 3.354 3.726 
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FIG. 1.  A SIMPLIFIED MODEL OF SPEECH PRODUCTION MECHANISM. 
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FIG. 2.  KEY MODULES FOR ASIC DESIGN OF SPEECH ANALYSIS. 
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FIG. 3.  DOUBLE BUFFERS FOR SPEECH SAMPLING. 

 

 

 

 



國立宜蘭大學工程學刊(2007) 

- 82 - 

X Reg+

Select
256 to 10

X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+

Input
Buffer

8 bits *
256 words

ss[0]
|

ss[255]

ss[i]

ss[i+1]

ss[i+2]

ss[i+3]

ss[i+4]

ss[i+5]

ss[i+6]

ss[i+7]

ss[i+8]

ss[i+9]

8 bits Counter Control

Input

CLK

Rs[0]

Rs[1]

Rs[2]

Rs[3]

Rs[4]

Rs[5]

Rs[6]

Rs[7]

Rs[8]

Rs[9]

Finish

 

FIG. 4.  DIAGRAM FOR COMPUTATION OF AUTOCORRELATION FUNCTION IN 
PARALLEL. 
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FIG. 5.  LEVINSON-DURBIN ITERATIVE MODULE. 
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FIG. 6.  DIAGRAM FOR ROOT-SOLVING MODULE. 
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FIG. 7.  PROCESSING UNITS THAT CONSTITUTE THE ARITHMETIC UNIT OF THE 
ROOT-SOLVING MODULE PRESENTED IN FIG. 6. 
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FIG. 8.  BLOCK DIAGRAM OF SPEECH SYNTHESIS. 

 

 

 

 

FIG. 9.  PITCH ADJUSTMENT FOR THE GLOTTAL PULSE. 

 

 

 



Structural Design for a 1.6 Kbps GELP Speech Coder 

- 85 - 

+ DD+
×

c7

+

DD

+
×

c8

++

D

+

+ DD+
×

c5

+

DD

+
×

c6

+

+ DD+
×

c3

+

DD

+
×

c4

+

+ DD+
×

c1

+

DD

+
×

c2

+

-1/2

s(n)e(n)

-1

+ DD+
×

c7

+

DD

+
×

c8

++

D

+

+ DD+
×

c5

+

DD

+
×

c6

+

+ DD+
×

c3

+

DD

+
×

c4

+

+ DD+
×

c1

+

DD

+
×

c2

+

-1/2

s(n)e(n)

-1

 

FIG. 10.  SIGNAL FLOW GRAPH OF LSP SYNTHESIS DIGITAL FILTER. 
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