
Structural Design for a 1.6 Kbps GELP Speech Coder

- 69 -

宜蘭大學工程學刊(2007)
第三期第 69～86 頁

Structural Design for a 1.6 Kbps GELP Speech Coder

Hwai-Tsu Hu1 Yong -Nan Chen2

1. Professor, Department of Electronic Engineering, National Ilan University
2. Technical Manager, Terasic Technologies Inc.

Abstract

This paper presents a structural design for hardware implementation of low-bit-rate
speech coding. The processing algorithm emerges from the traditional pitch-excited linear
prediction vocoder with incorporation of glottal-source properties. To make the coding
algorithm realizable, constraints are imposed on the complexity of computational modules as
well as the need of arithmetic operations. Nonetheless, the simplified algorithm is still
capable of carrying out 1.6 Kbps speech coding with acceptable quality.

We have gone through algorithm modification, fixed-point analysis, hardware design, and
circuit synthesis by making use of various design tools. The hardware design, described by
using Verilog-HDL, is compiled and verified on an FPGA-based DSP board. Our results
confirm that the proposed architecture works quite well. As this architecture needs not
consume many hardware resources, it is suitable for single chip implementation.

Keywords：speech coding, VLSI architecture, hardware implementation

國立宜蘭大學工程學刊(2007)

- 70 -

1.6Kbps GELP 語音編解碼器之結構設計

胡懷祖 1 陳泳男 2

1. 國立宜蘭大學電子工程學系教授
2. 友晶科技公司技術經理

摘 要

本文針對低位元率語音編碼之硬體實現提出結構性設計，負責程序處理之演算法源自於傳統

的脈衝激源線性預測語碼器，另摻入聲源之特性。為了讓編解碼演算法得以硬體實作，諸如計算

模組的複雜度與算數運算的需求均加上許多限制，然而簡化後的演算法仍能執行 1.6Kbps 語音

編解碼並輸出可接受之音質。

我們藉由多樣設計工具，經歷了演算修正、定點數分析、硬體設計、電路合成等過程，最後

以 Verilog 硬體描述語言設計出之電路硬體是在擁有 FPGA 的 DSP 開發板進行編譯及驗證，所得

結果證實這套架構的工作效能。由於該架構不需耗用過多硬體資源，其實是非常適合以單晶片實

現。

關鍵詞：語音編解碼、VLSI 構造、硬體實現

Structural Design for a 1.6 Kbps GELP Speech Coder

- 71 -

1. Introduction

In recent years, low-bit-rate speech coding has
drawn much attention due to its wide applications to
telecommunications and information appliances.
The phrase “low bit rate” is particularly used to
signify the reduction of transmission bandwidth and
memory storage, which in turn promotes the
efficiency of speech-related devices and facilities.
Nowadays prevailing products consist of the cellular
handset, videophone, VoIP, dialogic system, digital
recorder, and digital answering machine, etc. In
order to economize the above-mentioned commercial
products, a plausible choice would be the exploitation
of chip design so that all processing requirements are
accomplished by integrated circuits and control logics.
Nevertheless, the mapping of a coding algorithm into
hardware is a work-intensive process, since the
designer must understand how to adjust the
underlying algorithm subject to many constraints.
Generally encountered constraints include the latency,
throughput, timing characteristics and the complexity
of the algorithm. For ASIC-based implementation a
well-developed algorithm should also be
parameterizable. In other words, the algorithm
should be coded into modules using a hardware
description language like VHDL and Verilog.
Furthermore, to make the developed algorithm
portable to a structural design with limited hardware
resources, it is essential for us to trim the algorithm as
much as possible and to take away complicate
operations providing the resulting performance is still
acceptable.

2. Design procedure

In this paper, apart from the algorithmic issue,
the design and implementation of the VLSI
architecture is also our concern. The steps leading to
hardware implementation of speech coding are as
follows. First, the algorithm is developed and
verified within the working environment of Matlab.
We then translate the algorithm into a fixed-point
version using the C++ programming language. A
new data type based on the size of bits and the
position of the radix point is created to suit the need of
binary arithmetic. Hence different types of numeric
values are convertible via casting operators.
Arithmetic operators are reconstructed accordingly to

manage fixed-point operations. As we proceed with
the algorithm flow, the radix point of the variables is
dynamically allocated to preserve the most significant
bit. For some particular variables we have reserved
few bits to avoid overflow during intermediary stages.

The foregoing fixed-point analysis ensures the
portability of the developed algorithm to ASIC-based
implementation. As we attempt to shorten each
design cycle, the hardware system is developed based
on a DSP development board. This board has an
FPGA device integrated with an AD/DA converter
responsible for audio sampling and playback. We
use the Verilog language to create the required
processing components and control units.
Subsequent functional simulation and logic synthesis
are accomplished by resorting to the ModelSim
(which is a Verilog simulator) and the Quartus II
(which is a synthesis tools distributed by Altera Inc.).
For a complicated system such as our speech coder,
timing simulation and analysis is crucial as well.
Eventually, the in-circuit evaluation is carried out on
the DSP board once the FPGA device is properly
configured. The above procedures for algorithm
development, computer simulation, and hardware
verification are repeated until we reach satisfying
results.

Consequently, this paper not only aims at the
development of an efficient algorithm but also verifies
its feasibility via hardware implementation using an
FPGA. The rest of this paper is organized as follows.
Following the discussion of the design procedure,
both the speech production model and the bit
allocation for the proposed coding scheme are
described in Section 3. Sections 4 and 6 present the
architectures for speech analysis and synthesis
respectively, while the spectral quantization is placed
in between (namely, section 5). The performance
evaluation of the coding algorithm and architecture is
discussed in Section 7. Concluding remarks are finally
given in Section 8.

3. Speech production model

We adopt a model called glottal excited linear
prediction (GELP) [1]-[3] to incorporate glottal
properties into the conventional linear prediction (LP)
coder. As shown in Fig. 1, this model inherits the
fundamental structure of the LP coder [4], which is
developed based on the source-filter theory. The

國立宜蘭大學工程學刊(2007)

- 72 -

source model switches between the voiced and
unvoiced types according to the voicing condition,
while the all-pole synthesis filter renders the
composite spectral characteristics of the glottal flow,
vocal tract transfer function, and lip radiation.

Given that the speech signal is sampled at 8 KHz
with 8-bit resolution, we update the analysis frame at
a rate of 200 samples with an overlap of 56 samples
for consecutive frames. Table I presents the bit
allocation for the speech coder.

4. Architecture for speech
analysis

Speech analysis with respect to the speech coder
is equivalent to extracting modeling parameters such
as the pitch, gain, and filter coefficients. Techniques
constituting the framework of speech analysis thus
involve pitch detection, gain determination, and
estimation of filter coefficients.

There are five important modules that constitute
the hardware for speech analysis. As shown in Fig.
2, apart from the buffer, one module is designed to
detect pitch periods while the remaining three are used
to derive spectral parameters.

A. Data Buffer and Memory Requirement

As each analysis frame consists of 256 speech
samples in length, we reserve a memory space of 400
bytes to achieve a double-buffer processing of speech
data. The reserved memory is split into two parts of
equal size. Speech samples captured by the AD
converter are assigned to the designated memory in a
circulating manner. A buffer is full once it collects
200 samples. The last 56 samples in the alternative
buffer and those in the current buffer then form a
frame of 256 samples for analysis. Fig. 3 illustrates
the double-buffer scheme.

As will be clear later, we impose a 1st-order
highpass filter on the speech signal before performing
LP analysis. Additional memory space is required if
we want to reserve intermediate outcomes. To avoid
unnecessary memory consumption, we instead apply a
1st-order filtering operation to the autocorrelation
function. Given that the 1st-order filtering process is
expressed as

)1(925.0)()(−−= nsnsny (1)

where s(n) denotes the speech signal, and y(n) is
the filtered output that is also regarded as the

intermediate result. Multiplying each side of Eq. (1)
by itself with a different index and taking the time
average over the underlying frame result in

()
)(925.0

)1()1(925.0)()(
2 kR

kRkRkRkR

ss

ssssssyy

+

−++−=
 (2)

where)(kRyy and)(kRss correspond to the kth-lag

autocorrelation function of y(n) and s(n), respectively.
It turns out that an extra lag of skRss)'(is
indispensable in order to compute skRyy)'(.

However, since the number of multiplication required
by the extra lag autocorrelation function is exactly the
same as that required by the 1st-order filtering, the
need of an extra autocorrelation function does not
mean the necessity of additional computation. Thus,
Eq. (2) is considered an alternative approach to
acquiring the autocorrelation function of a filtered
signal without any demand for memory space to store
the intermediate result.

B. Autocorrelation

The most time-consuming computation lies on
the computation of the autocorrelation function. To
accelerate the processing speed, we deploy ten
multiplier-accumulators (MACs) to attain the
autocorrelation sequence in parallel. Fig. 4 presents
the block diagram for the computation of
autocorrelation functions. Since speech samples
captured from the AD converter are trimmed down to
have 8-bit resolution, the expenditure of hardware
resources is still under a reasonable level.

C. Levinson-Durbin Recursion

Once the autocorrelation function is available, a
Levinson-Durbin recursion module shown in Fig. 5 is
brought in to derive LP coefficients. The involving
computational units consist primarily of multiplexers
and primitive arithmetic operators, which are designed
to cope with data of different resolution. A
by-product associated with the Levinson-Durbin
recursion module is the easy derivation of the gain
factor, which is used to control the intensity of
synthetic speech. As suggested by Makhoul [5], we
computed the gain, termed G, by referring to the
linear prediction relation.

∑
=

−=
p

k
yykyy kRaRG

1

)()0((3)

where ka denotes the kth LP coefficient, and p

stands for the LP order. While the above formula
necessitates a square root operation, a fast algorithm

Structural Design for a 1.6 Kbps GELP Speech Coder

- 73 -

developed by Tommiska [6] is employed to execute
the process. The adopted square-root operation
needs only n clock cycles for 2n-bit wide numbers.
In Eq. (3), the value within the square root operator is
just the variable E (variance of prediction errors)
appearing in Fig. 5. This particular value is
simultaneously available right after completing the
linear prediction analysis of speech signals.

D. Conversion from LP Coefficients to LSP
Parameters

The forth module focuses on the conversion from
the LP coefficients to the line spectral pair (LSP)
parameters. Given that the LP coefficients are
available through the Levinson-Durbin iteration, two
auxiliary polynomials are formed by adding and
subtracting the LP transfer function to its reversed
system. The angles of the roots derived from these
two polynomials are known as the LSP parameters.
Unlike many other algorithms that employed iterative
procedures to find the roots, we had deliberately
reduced the prediction order down to 9, thus allowing
us to adopt a closed-form solution to pursuit the roots.
More specifically, we utilize a 1st-order highpass
filter in combination with an 8th order LP filter to
model the spectral characteristics. The 1st-order
highpass filter is set as Eq. (1) to emphasize the
high-frequency region of spectrum, while the
8th-order LP filter accounts for the formant structure.
Assuming that)(zA is the transfer function of the

8th order linear predictor defined as
8

8
2

2
1

11)(−−− ++++= zazazazA L . (4)

Under such a condition, the auxiliary symmetric
and anti-symmetric polynomials, denoted as)(zP
and)(zQ , become

⎩
⎨
⎧

−=
+=

−+−

−+−

)()()(
)()()(

1)1(

1)1(

zAzzAzQ
zAzzAzP

m

m

 , 8=m . (5)

Notice that either)(zP or)(zQ can be

rewritten as the following form:
() () () ()[]

() () ()[]42031
2

42
3

3
49

0
1

1
22

2
33

3
449

234
)(

rrrxrrxrrxrxz
rzzrzzrzzrzzzzR

−−+−+−++=

++++++++=
−

−−−−−

 (6)
where ωcos21 =+= −zzx , and ω denotes the

corresponding line spectrum frequency. We rewrite
the expression within the brackets on the right hand
side of Eq. (6) as

0234 =++++ dcxbxaxx (7)

As demonstrated in [7], the above equation can

be solved as follows. First, let
2
aE = ,

1
2 4/ ybaA +−= , and

A
cEyB −= 1 , where 1y is

one of the roots for the resolvent cubic equation
 04)4(2223 =−+−−+− cbddaydacbyy .

Then, the four roots of Eq. (7) become

2
)(2)()(1

2

2,1

ByEAEA
z

+−++−
=

m
 (8)

2
)(2)()(1

2

4,3

ByEAEA
z

+−−−
=

m
. (9)

Fig. 6 illustrates the required hardware resources
for the root-solving procedure.

The above-mentioned root-solving module
demands a lot of square-root operations to derive the
cosine function of the LSP parameters, termed

]3[~]0[clsp in Fig. 6. Again, the digital circuit

devised by Tommiska [6] is employed to fit for the
task. In fact, the square-root component has become
the major part of the arithmetic unit shown in Fig. 6.
Other crucial constituents consist of two
adders/subtractors, a multiplier, a divider, a
comparator, and a logic circuit for sorting the
sequence of parameters. Fig. 7 depicts such a
structure.

E. Pitch Detection

The last module for speech analysis is dedicated
to pitch detection. For LP-type vocoders, the pitch is
often estimated by examining the autocorrelation
function of the analysis frame. However,
computation involving the correlation function is
always burdensome, especially when the range of the
time lag extends from 21 to 147 considered in our
case. It is definitely unwise to deal with this kind of
computation in a parallel manner since the
corresponding hardware demands 127 MACs. We
therefore resolve the difficulty by treating the
autocorrelation function as the comparison between
the sign bits extracted from a lowpass filtered signal
and a shifted version of themselves. In practice, the
sign bits of all samples in a frame can be collected as
a lengthy word. The correlation function can be
attained by first taking the bit-wise equivalence (or
called the exclusive-NOR) operation and then
counting the number of 1’s. In fact, this kind of
approaches was considered useful in early days when
the speed of processors is slow, but is obsolete
nowadays. Ironically, it suits the VLSI design very

國立宜蘭大學工程學刊(2007)

- 74 -

well. The accuracy of the estimated pitch is
somewhat degraded due to the degeneration of speech
samples, but can be ameliorated a lot by incorporating
with supplementary decision logics.

In our coding scheme, the voicing classification
and pitch detection is formulated as the following.
Let)(kmc denotes the number of 1’s accumulated

from the outcome of the bit-wise equivalent operation
when the time lag is k . We multiply)(kmc by a

scaling factor)002.01(k+ to render a vale more like

the unbiased autocorrelation function, i.e.,
)()002.01()(~ kmkkm cc += Supposed that cp

happens to be
{ }14721)(~maxarg ≤≤= kkmp ckc . (10)

We regard cp as the pitch period in case the

frame is claimed as voiced speech. However, the
analysis frame is categorized as the unvoiced type if
either one of the following criteria is met.

(i) 240)0(<ssR (11-1)
(ii) ())0(3.0)1(ssss RR < & ()185)(~ <cc pm

(11-2)
(iii) ()ppc ppp 15.0>− & ()160)(~ <cc pm

(11-3)
where Pp denotes the pitch period obtained from

the previous frame. In Eq. (11), criterion (i) is used
to assess the energy level of the speech segment,
while criterion (ii) is adopted to examine the spectral
tilt. On the other hand, criterion (iii) is aimed at the
discrimination of unvoiced conditions against
abnormal pitch variations. We have tried out these
conditions for a variety of speech utterances. The
resulting performance is quite satisfactory.

To summarize this section in brief, our
computational efficiency in the analysis phase
originates from algorithmic modifications in manifold.
Firstly, the speech ensemble is degenerated into a
lengthy word, within which each bit represents the
sign of a speech sample. As a result, the
autocorrelation function necessitated by the pitch
detection is substituted by a bit-wise equivalence
operation between two words followed by summing
up the number of 1’s. Secondly, in contrast with
most vocoders that employed a 10th-order LP analysis,
the proposed coder adopts an 8th-order predictor
cascaded by a 1st-order emphasis filter. Because the
order directly reflects the computational requirements,
such an arrangement not only makes the derivation of
LP coefficients easier but also reduces the amount of

bits required to encode spectral properties.
Moreover, the choice of an 8th-order predictor allows
a simple closed-form approach to derive the LSP
parameters.

5. Spectral quantization

As indicated by Table I, there are 70% of bits
reserved for spectral quantization. It is therefore
advantageous for us to devote one section to this issue.
The conversion between the LP coefficients and LSP
parameters is essential in consideration of fewer bits
for spectral quantization. The popularity of LSP
parameters for spectral representation results from its
superiority in stability check, excellent interpolation
properties, and relative insensitivity to quantization
errors [8]. Since the cosine functions of LSP
parameters are directly applicable to the synthesis
filter, we encode them using a 28-bit scalar quantizer
with bits allocated according to the sequence,
{4,3,4,3,4,3,4,3}. Notice that the predictive vector
quantization is not considered here because it
demands a great deal of computation and memory
space.

To obtain the optimal nonuniform quantizer, the
well-known generalized Lloyd algorithm is used [9].
Our training data consist of 68314 speech frames
extracted from Mandarin sentences uttered by 10
speakers (5 males and 5 females). Another 22112
sample frames extracted from a different set of
speakers and sentences are prepared for verifying the
competence of the trained quantizer. Table II
presents the results in terms of spectral distortion
between the actual and quantized cosine function of
LSP parameters. It is shown that the interlacing
strategy for bit assignment comes up with an average
SD of 0.93 dB. Among the distortion measures from
all the training data, only 1.45% of them exceed 2 dB
and 0.0029% are beyond 4 dB. In particular, we
observe no significant difference for the SD’s
measured either inside or outside the training set.
Apparently, this scalar quantizer achieves a
transparent quantization [10] of spectral information
for sure.

It ought to be noted that the bit assignment plays
an important role in reducing the average spectral
distortion. We have attempted a variety of bit
allocations other than }3,4,3,4,3,4,3,4{ , but ended up

with worse results. Such consequences can be best

Structural Design for a 1.6 Kbps GELP Speech Coder

- 75 -

understood by inspecting Table III, which indicates
the SD’s contributed by each individual parameter.
In the case under study, only one parameter was
quantized at a time using either 3 or 4 bits and the
other parameters remain intact. It is evident in Table
III that not only the SD measures with odd-indices are
larger than that with adjacent even indices, but also
the improvement is relatively significant for the
quantization of odd parameters when the number of
bits is increased from 3 to 4. This suggests assigning
more bits to quantize odd-indexed cosine function of
LSP parameters.

6. Architecture for speech
synthesis

Synthetic speech is the result attained by feeding
the excitation (either the glottal pulse or random noise)
to a synthesis filter. The synthesis of unvoiced
speech is straightforward since the excitation is
accessible from a random number generator. The
synthesis of voiced speech is rather complicated
because we have to modulate the pitch period apart
from replicating the glottal features.

In light of the speech production model described
in Fig. 1, the architecture for hardware
implementation is illustrated in Fig. 8. It consists
mainly of a white noise generator, a glottal pulse
codebook, three interpolators, a gain codebook, a LSP
synthesis filter, and a LSP parameter decoder.

The format of the input data utilized in the
proposed architecture is consistent with that listed in
Table I. For each frame of 25 ms, a packet of 40 bits
is converted to modeling parameters before
synthesizing into 200 speech samples. The voicing
parameter is used to determine whether the excitation
should be drawn from the glottal pulse modulator or
from the white noise generator. The gain of the
excitation is quantized based upon a codebook of a
5-bit size. We multiply the selected excitation
source by the decoded gain to adjust the vocal
intensity.

As we use 28 bits to encode the cosine functions
of eight LSP parameters, an associated decoder is
required prior to loading into the synthesis filter.
Also, an interpolation scheme is employed in our
proposed architecture to smooth the transition of
speech synthesis. All the components are illustrated

in the following subsections.

A. Glottal Pulse Codebook

The glottal pulse codebook contains a pulse-like
waveform with glottal phase characteristics. Steps of
establishing the glottal codebook are as follows.
First, a prototype of the glottal pulse for one pitch
period is extracted from the prediction residual of a
sustained vowel /a/. Next, this prototype is
thoroughly decolorized by unifying its magnitude
discrete Fourier transform (DFT) while leaving the
associated phase DFT unchanged. The ensemble
reserved in the codebook is obtained by circularly
shifting the main excitation to the beginning position.
Since the range of pitch period presumably varies
from 21 to 147 samples, we adopt an overlap-and-add
approach [11] to adjust the pitch period by

()
⎪⎩

⎪
⎨
⎧

<+

≥+−×+×−−
−=

NLifiwiw

NLifiNLwiiwiN
Niv

),()(

,)()()1(
1

1
)(

21

 for Ni <≤0 (12-1)

⎪⎩

⎪
⎨
⎧

−+=

−=
−

−−×=
　　　　1,,1, ,0

1,,2,1,0,
1

1)()(1
NLLi

Li
L

iLiwiw
L

L

 (12-2)

⎪⎩

⎪
⎨
⎧

−+−−=
−

+−×

−−=
= 1,,2,,

1
)(

1,,2,1,0 ,0
)(2 NLNLNi

L
LNiiw

LNi
iw

L

L

 (12-3)

where)(iv is the resulting excitation,)(iw

represents the prototype of the glottal pulse with a
length of L , and N denotes the targeted pitch
period. In Eqs. (11-2) and (11-3),)(1 iw and

)(2 iw can be regarded as the)(iw weighted by

forward and backward triangular windows followed
by zero-padded at the end and beginning positions,
respectively. Fig. 9 illustrates the process for pitch
adjustment.

B. Random Noise Generator

The hardware implementation of a pure random
noise generator is very difficult. A pseudo random
noise generator is commonly used instead. Here we
adopt the linear feedback shift register (LFSR) to
produce a random sequence. Since each synthesis
frame only needs to fetch 200 points, the maximal
length sequence does not require a large value to meet
the characteristics of randomness. The LFSR

國立宜蘭大學工程學刊(2007)

- 76 -

structure thus suits our purpose very well for
generating the noise excitation for speech synthesis.

C. Interpolator

The interpolator is employed to smooth the
transition across frames. When the synthesis steps
forward in a frame, modeling parameters are
interpolated according to the current location by

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+
=+
=+
=+

=

3,875.0125.0
2,625.0375.0
1,375.0625.0
0,125.0875.0

k
k
k
k

k

ϕφ
ϕφ
ϕφ
ϕφ

θ (13)

where φ and ϕ denote the decoded parameters of the
previous and current frames, respectively. θk is the
interpolated parameter for synthesis in the kth
subframe.

To simplify the complexity of hardware circuitry,
we modify the original weighting values of Eq. (12)
by using integer manipulation rather than regular
arithmetic. That is, we replace the weighting values
{0.875, 0.625, 0.375, 0.125} by its fractional
counterparts {7/8, 5/8, 3/8, 1/8}. This change will
allow the interpolation performable on a simple
hardware circuit, since it only requires fundamental
operations such as shifting and summation. For
instance, the multiplication of 1/8 can be achieved by
arithmetically shifting the input value to the right by 3
bits, and the multiplication of 7/8 is obtainable by
subtracting such a shifted version from itself.

D. Gain Codebook

The gain codebook used in our proposed speech
synthesis allocates 32 (= 52) words in memory. This
codebook reflects the power of the synthesized speech.
For simplicity, it is implemented by using a lookup
table within a ROM.

E. LSP Synthesis Digital Filter

In LSP speech synthesis, a digital filter is
constructed based on the LSP parameters [12]. Fig.
10 illustrates the signal flow graph of the LSP
synthesis filter of order 8. It is readily seen that such
a structure is very suitable for hardware
implementation due to its regularity. This particular
filter consists of 8 trunk circuits. The
z-transformation of each trunk circuit appears to be

211 −− +− zzci , where iic ωcos2= and iω is the

ith LSP parameter. Since this new circuit holds its
regularity, the whole LSP computation is
accomplishable by using the same hardware structure
except for the final summation (see Fig. 10).

7. Performance evaluation
A mean opinion score (MOS) listening test is

performed on a total of sixteen utterances gathered
from 4 speakers (2 male, 2 female), each delivering
four speech sentences. Apart from the synthetic
results of the proposed coder, the outcomes from the
2400 bps LPC-10e vocoder (FS-1015) [13], 4800 bps
CELP coder (FS-1016) [14], and 2400 bps MELP [15]
coder are also provided as three baselines. Since
the synthetic speech signals obtained from the other
coding schemes are in floating-point format, the
Matlab version of the proposed algorithm is adopted
for comparison. There are 18 listeners participating
in the MOS test. During the test, every listener is
equipped with a pair of high-fidelity earphones, which
are connected to the sound card on a PC. A program
is designed to play back the speech stimuli in random
order and to collect the answer picked by the listeners.
The results are shown in Table IV. It is to our
surprise that the mean opinion scores of the
synthesized utterances for the males are inferior to
that for the females for all kinds of speech coders.
According to the listeners’ opinions, this is probably
due to the fact that the vocal quality of one male
sounds a little boring. As expected, the MELP
coder holds the best average score, followed by the
CELP coder. The proposed coding scheme is
slightly worse than the LPC-10e vocoder. We
believe that the faults in our proposed coder are
mostly attributable to the occasional errors in pitch
detection and the over-simplification in spectral
characterization. Although the problems are
generally ameliorable by means of more advanced
techniques, the resolutions are often accompanied
with the increase in computational burden. Since
there always exists a tradeoff between algorithmic
complexity and synthetic quality in concern with
hardware implementation, a wise strategy would be
the development of a reconfigurable system inside
which each module is designed subject to hardware
specifications.

Besides algorithm development, the functional
analysis of the architecture for speech coding has been

Structural Design for a 1.6 Kbps GELP Speech Coder

- 77 -

justified by using Verilog HDL. The obtained
outcome of the Verilog simulator does not deviate
from the fixed-point analysis based on the C++
program. Such a result evidences the competence of
the proposed architecture. Nevertheless, the
fixed-point rendition of our speech coder seems to
suffer degradation attributable to numerical round-offs
and truncation errors. Amelioration of such
deficiency is possible at the cost of increasing size in
bits. To further examine our proposed architecture,
we try it out on a DSP development board mounted
with an FPGA device containing approximately
1,500,000 gates counts. After completing the
hardware compilation, we find that the proposed
architecture required approximately 16,733 logic
elements to synthesize the intended functionality,
while a single such FPGA offers 51,840 logic
elements in totality. About 85% of the spent
hardware resources are ascribable to speech analysis.

8. Conclusion
A hardware-oriented algorithm with its hardware

implementation for speech coding at 1.6 Kbps has
been presented in this paper. To make the developed
algorithm suitable for chip design, we have trimmed
the algorithm and taken away complicate computation.
The performance of the proposed 1.6 Kbps speech
coder has been subjectively evaluated. The
preliminary results show that our proposed coder is
capable of attaining an acceptable quality close to that
of LPC-10e.

We have gone through algorithm modification,
fixed-point analysis, hardware design, and system
verification by making use of several development
tools. It is confirmed that the resultant algorithm is
realizable using fundamental arithmetic and bit-wise
operations. The only exception is the square root
function, which is nonetheless transferred into a series
of bit-wise shifts and comparisons. The output
observed in the simulation of Verilog modules
consists with our fixed-point analysis. However, the
fixed-point rendition may suffer quality degradation
due to round-off errors. Further investigation is
required in order to determine how to resize
parameters in the module so that the perceived
distortion can be effectively reduced.

Since our proposed architecture only requires a
moderate amount of hardware resources, it is suited

for the ASIC or FPGA implementation. Such an
architecture is appropriate for the design of electronic
devices which demand voicing interfaces, such as
those previously mentioned in the introduction.

Acknowledgment

This work was supported by the National Science
Council, Taiwan, ROC, under Grant
NSC91-2622-E-197- 004-CC3.

References
[1] D. G. Childers and H. T. Hu, “Speech synthesis

by glottal excited linear prediction,” J. Acoust.
Soc. Am., vol. 96, no. 4, pp. 2026-2036, 1994.

[2] H. T. Hu and H. T. Wu “A glottal-excited
linear prediction (GELP) Model for
low-bit-rate speech coding,” Proc. Natl. Sci.
Counc. ROC(A)., vol. 24, no. 2, pp. 134-142,
2000.

[3] H. T. Hu, F. J. Kuo, and H. J. Wang, “A pseudo
glottal excitation model for the linear prediction
vocoder with speech signals coded at 1.6 kbps,”
IEICE Trans. Inf. & Syst., vol. 83, no. 8, pp.
1654-1661, 2000.

[4] B. S. Atal and S. L. Hanauer, “Speech analysis
and synthesis by linear prediction of the speech
wave,” J. Acoust. Soc. Am., vol. 50, no. 2,
637-655, 1971.

[5] J. Makhoul, “Linear prediction: A Tutorial
Review,” Proc. IEEE, vol. 63, pp.561-580,
1975.

[6] M. T. Tommiska, “Area-efficient
implementation of a fast square root
algorithm,” in Proc. the 2000 Third IEEE
International Caracas Conference on Devices,
Circuits and Systems, 2000, pp. S18/1 -S18/4.

[7] C. H. Wu and J. H. Chen, “A novel two-level
method for the computation of the LSP
frequencies using a decimation-in-degree
algorithm,” IEEE Trans. Speech Audio Process.,
vol. 5, no. 2, pp. 106-115, 1997.

[8] F. K. Soong and B. H. Juang, “Optimal
quantisation of LSP parameters,” IEEE Trans.
Speech Audio Process., vol. 1, no. 1, pp. 15-24,
1993.

[9] Y. A. Linde, Y. A. Buzo, and R. M. Gray, “An
algorithm for vector quantization design,” IEEE

國立宜蘭大學工程學刊(2007)

- 78 -

Trans. Commun., vol. 28, no. 1, pp. 84-95.
1981.

[10] K. Paliwal and B. Atal, “Efficient vector
quantization of LPC parameters at 24
bits/frame’, IEEE Trans. Speech Audio
Process., vol. 1, no. 1, pp. 3-14, 1993.

[11] E. Moulines and F. Charpentier, “Pitch-
synchrounous waveform processing techniques
for text-to-speech synthesis using diphones,”
Speech Commun., vol. 9, nos. 5/6, pp. 453-467,
1990.

[12] S. Furui, Digital processing, synthesis, and
recognition, Marcel Dekker, Inc., New York
and Basel, 1989.

[13] T. E. Tremain, “The government standard
linear predictive coding algorithm: LPC-10,”
Speech Tech. Mag., pp. 40-49, 1982.

[14] J. P. Campbell, T. E. Tremain, and V. C. Welch,
“The federal standard 1016 4800 bps CELP
Voice Coder,” Digital Signal Process, vol. 1, no.
3, pp. 145-155, 1991.

[15] L. M. Supplee, R. P. Cohn, J. S. Collura, and A.
V. McCree, “MELP: the new federal standard
at 2400 bps,” Proceedings of ICASSP,
1591-1594, 1997.

Structural Design for a 1.6 Kbps GELP Speech Coder

- 79 -

Table I : BIT Allocation FOR THE PROPOSED 1.6 KBPS SPEECH CODER

Sampling Rate 8 KHz
Frame Rate: 25 ms (200 samples/frame).
Parameter bits/frame
Voicing & Pitch 7
Gain 5
Spectrum 28
Total 40

Table II: Spectral distortion of the scalar quantizer with respect to two different bit allocation
strategies

Outliers (%)
Bit allocation Data set Spectral

Distortion [dB] 2-4 dB > 4 dB

within training 0.934 1.45 0.0029 {4,3,4,3,4,3,4,3}
out-of-training 0.937 1.38 0.0000
within training 1.005 2.91 0.0498 {4,4,4,4,3,3,3,3}
out-of-training 1.078 4.18 0.0814

Table III: Influence due to quantization with respect to each individual cosine function of line
spectral frequency

Parameter 1st 2nd 3rd 4th

Quantization 3 bits 0.360 0.279 0.396 0.378
error (dB) 4 bits 0.181 0.149 0.206 0.193
Improvement due to an
extra bit [dB] 0.179 0.130 0.190 0.185

5th 6th 7th 8th

 0.416 0.357 0.385 0.264
 0.216 0.184 0.200 0.136
 0.200 0.173 0.185 0.128

國立宜蘭大學工程學刊(2007)

- 80 -

Table IV: MOS’s with respect to the speech synthesized by FOUR different SPEECH coders

 Proposed
1.6 Kbps
GELP

2.4 Kbps
LPC-10e

4.8 Kbps
CELP

2.4 Kbps
MELP

Male 1.958 2.035 3.139 3.681

Female 2.493 2.861 3.569 3.771

Overall 2.226 2.448 3.354 3.726

Governed by the power
of prediction residual

Pitch period

All-pole
synthesis
filter

Pitch
modulator

Random
noise
generator

G
Synthetic
Speech

voiced excitation

unvoiced excitation

Glottal
pulse

FIG. 1. A SIMPLIFIED MODEL OF SPEECH PRODUCTION MECHANISM.

Structural Design for a 1.6 Kbps GELP Speech Coder

- 81 -

Speech
signal

Sampling
& buffer

Pitch
detection

Auto-
correlation

Durbin
algorithm

LPC to LSP

Polynomial
root-solving

(spectral parameters)

(Pitch period)

FIG. 2. KEY MODULES FOR ASIC DESIGN OF SPEECH ANALYSIS.

Buffer. B
(200 bytes)

Buffer. A
(200 bytes)

Frame. A
(256 bytes)

Circulating

Frame. B
(256 bytes)

FIG. 3. DOUBLE BUFFERS FOR SPEECH SAMPLING.

國立宜蘭大學工程學刊(2007)

- 82 -

X Reg+

Select
256 to 10

X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+
X Reg+

Input
Buffer

8 bits *
256 words

ss[0]
|

ss[255]

ss[i]

ss[i+1]

ss[i+2]

ss[i+3]

ss[i+4]

ss[i+5]

ss[i+6]

ss[i+7]

ss[i+8]

ss[i+9]

8 bits Counter Control

Input

CLK

Rs[0]

Rs[1]

Rs[2]

Rs[3]

Rs[4]

Rs[5]

Rs[6]

Rs[7]

Rs[8]

Rs[9]

Finish

FIG. 4. DIAGRAM FOR COMPUTATION OF AUTOCORRELATION FUNCTION IN
PARALLEL.

/

+

-
X

228

AA

BB

KK

R
E
M

AA

E

M
Temp

KK

16 bits bus 32 bits bus

1’s

CC

FIG. 5. LEVINSON-DURBIN ITERATIVE MODULE.

Structural Design for a 1.6 Kbps GELP Speech Coder

- 83 -

Arithmetic
Unit

Temp Register File
32 bits * 2 words
16 bits * 3 words

cof1
16 * 3
Regs

cof2
16 * 2
Regs

clsp
16 * 4
Regs

Term
16 * 3
Regs Control Unit

16 bits bus 32 bits bus Control signal

CLK

Set

Finish

Operation Register File
32 bits * 3 words
16 bits * 12 words

MPD

DID

MPR

DIR

clsp[0]
|

clsp[3]

FIG. 6. DIAGRAM FOR ROOT-SOLVING MODULE.

16 bits bus 32 bits bus

X
/

Square root

Decrease
Sorting

Add/Sub/1’s
32 bits & 16 bits

clsp[0]
|

clsp[3]

clsp[0]
|

clsp[3]

Temp16_2

MPD
MPR

DID
DIR

Compare
Tmp

1.9*212 x1

Temp-
Registers
Operation-
Registers

Temp-
Registers
Operation-
Registers

FIG. 7. PROCESSING UNITS THAT CONSTITUTE THE ARITHMETIC UNIT OF THE
ROOT-SOLVING MODULE PRESENTED IN FIG. 6.

國立宜蘭大學工程學刊(2007)

- 84 -

LSF
Synthesis

LSF parameter
decoder

voiced Ａg

×

voicing
decision

Glottal Pulse

unvoicedWhite Noise
Generator

S(n)
e(n)

M
U

X

Code Book
interpolator

pitch
Input

gain spectrum

interpolator interpolator

FIG. 8. BLOCK DIAGRAM OF SPEECH SYNTHESIS.

FIG. 9. PITCH ADJUSTMENT FOR THE GLOTTAL PULSE.

Structural Design for a 1.6 Kbps GELP Speech Coder

- 85 -

+ DD+
×

c7

+

DD

+
×

c8

++

D

+

+ DD+
×

c5

+

DD

+
×

c6

+

+ DD+
×

c3

+

DD

+
×

c4

+

+ DD+
×

c1

+

DD

+
×

c2

+

-1/2

s(n)e(n)

-1

+ DD+
×

c7

+

DD

+
×

c8

++

D

+

+ DD+
×

c5

+

DD

+
×

c6

+

+ DD+
×

c3

+

DD

+
×

c4

+

+ DD+
×

c1

+

DD

+
×

c2

+

-1/2

s(n)e(n)

-1

FIG. 10. SIGNAL FLOW GRAPH OF LSP SYNTHESIS DIGITAL FILTER.

國立宜蘭大學工程學刊(2007)

- 86 -

