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Relationship Analyses Of Defuzzification
Methods Based On The Equivalent Designs of
Fuzzy Controllers

C.W. Tao

Associate Professor, Department of Electrical Engineering, National Ilan Institute of Technology

Abstract

The major components of fuzzy controllers based on if-then rules are membership functions for fuzzification,
inference mechanisms, composition operators, and defuzzification techniques. Each of these major parts may be
selected from several possible candidates. In this paper, we will focus on the relationship analyses of the different
defuzzification methods based on the equivalent design of fuzzy controllers. The relationship analyses of the
different defuzzification methods give the idea for designers to select the appropriate defuzzification strategy. And
the design approaches of equivalent controllers provide more flexibility to construct fuzzy controllers.
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. Introduction

Fuzzy controllers have been successfully utilized in the complex or ill-defined dynamic systems for the last
several years [1,4,6,8,9]. The major parts of fuzzy controllers based on fuzzy if-then rules are membership
functions for fuzzification, inference mechanisms, composition operators, and defuzzification techniques. Each of
these major parts may be selected from several possible candidates. One of key issues for the effective design of
fuzzy controllers is to determine the suitable combination of the alternatives for these major components. Since
there is in general no systematic approach to obtain an effective design for fuzzy controllers, it is an interesting
research topic to find out the relationships between possible candidates of each major component of fuzzy
controllers. In the book of Driankov and his colleague [2], the different defuzzification techniques are evaluated
with respect to some performance criteria. Yager and Filev [10] propose the basic defuzzification distribution
(BADD) transformation to generalize the defuzzification approach. However, these analyses for the defuzzification
methods are only componentwise. These componentwise analyses can not give the clear idea for the designer to
select the appropriate defuzzifier. In this paper, the relationships between the different defuzzification methods are
analyzed based on the equivalent design of fuzzy controllers. In our study, defuzzifier B is said to be more flexible
than the defuzzifier C if there exists an equivalent fuzzy controller with the defuzzifier B for every fuzzy controller
with the defuzzifier C. That is, we try to find out the systemwise relationships between different defuzzification
techniques. Even though the systemwise relationships between the different defuzzifiers are found only when
some conditions are satisfied, the analyses would suggest clearly the proper defuzzification method for the
system designer since the conditions are not very restrictive. Moreover, the design approaches of equivalent
controllers provide more flexibility to construct fuzzy controllers.

The remainder of this paper is organized as follows. The relationships between defuzzification techniques are
defined in Section . Section  presents the relationship between the expected value and centroid defuzzifiers.
The relationship between the height and centroid defuzzifiers are provided in Section . Section discusses
the relationship between the mean of maximum [7] and centroid defuzzification techniques. Section states a
conclusion.

II. Definitions of Relationships

Based on the definition of the equivalent fuzzy controllers,
Definition 1 Two fuzzy controller, F; and F,,are defined to be equivalent ( denoted by F; U F,) if the input-
output mappings of F; and F, are the same.

the relationships between the defuzzification techniques can be defined as follows:

Definition 2 For two defuzzification methods D, and D, , D, is defined to be more flexible than D, ( denoted
by D, P D, ) if for every fuzzy controller designed with D, , there exists an equivalent fuzzy controller

designed with D, .

Definition 3 For two defuzzification methods D1 and Dz, D2 is defined to be conditionally more flexible than

D, (denotedby D, ® D, )it D, P D, istrueonly under certain conditions.

Definition 4 For two defuzzification methods D, and D, , if D, ® D,and D, ® D, aretrue then D, and
D, aredefined to be conditionally equivalent ( denoted by D, « D, ).

With these definitions, the relationships between the centroid defuzzification (CT ) method and other
defuzzification methods ( expected value (EV ), height (HT ), and mean of maximum (MM )) are discussed in
the next three sections.
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IIl. Relationship between EV andCT

In this section, the fuzzy controller EVFC using the expected value method EV) as the defuzzification
technique and the fuzzy controller CTFC with the centroid defuzzification method CT are first defined. Then the
relationship between EV and CT is presented. To have the fuzzy controllers EVFC and CTFC defined, the
universes of discourse of input variables Xj .1 =1,2,...p, are fuzzily partitioned into n fuzzy sets, A]-b , b =12,..n.

Also, the operators min and max are adopted as the inference and composition operators, respectively.
1. Definition of EVFC

For the fuzzy controller EVFC, the output variable VY is fuzzily partitioned into N fuzzy sets B® , with
membership functions me (y) ,b=12..Nn. Thus, the EVFC is defined to be a fuzzy controller based on a
fuzzy rule basewith the 1" fuzzy rule as

R :if X, is Ly, X, is Lpi, then Y is G,

p
where
LT (AL A LA
and
Gl (B B? . B"}
And the membership function for the control actionis

My, 6)= MaX (min(M, , (X,)..M, _(X,) Mg 1) (1)

wheretheindex i indicates the i ™ rules.If the universe of discourse of output variable Y is discrete, then the
control action Y, of the EVFCwith the expected value defuzzification techniqueis
[o}
— a| f (yl)myout (yl )
Your = [<] 2

a.|myout(yl)

where f isafunctionof V.
2. Definition of CTFC

The Let the output variable Z of the fuzzy controller CTFC be fuzzily partitioned into fuzzy sets D" with
membership functions me (Z) b=12..n Thenthei th fuzzy if-then rules for the CTFC become

R i X, is Ly,... X, is L

| o oi» then z is D,

where Di isthe corresponding output fuzzy set and
D 1{D!D?..,D"}
With the membership function of the control action

mzom(z) :mgx(min( m_ (Xy)sees My o (Xp)’mDi (2)), (©)

the crisp control action of CTFC using the centroid defuzzification techniqueis
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— é.| Z| mzom(zl )

B S 4
a' | mzout (ZI )

out

3. Relationship between CT and EV

From the definitions of the fuzzy controllers EVFC and CTFC in the subsections .1 and .2, the
relationship of the defuzzification methods, CT and EV can be stated in the Theorem 1. And the proof of the
Theorem 1is also provided.

Theorem 1 The defuzzification methods CT and EV are equivalent if the condition

+ thefunction f intheEg. 2 isone-to-one and onto

is satisfied. That is, CT and EV are conditionally equivalent.
Pr oof
(EV® cT)

Let = f (y) and the membership functions M _, ,

m_. (2) =m_. (f (2) =m_. (y)

. . . . -1 . . .
since T isone-to-one and onto, the inverse function f ~ exists and there is one and only one corresponding

Y for every Z. Also, the fuzzy set Di intherule i of CTFCisdefined to have

my, (2)=mg (y), "z= f(y),

where G is the output fuzzy set used in the rule i of EVFC. Thus, for every input vector

X =(Xy, X5,y X,, ), , the membership function of the control action of CTFC,
m,, (2) =max(min( m_ (x,),...m_ (X,),m; (2))

=m, (y)

Yout

(5) and the crisp

control action of CTFC using the centroid defuzzification techniqueis
o

_ a | Zl mzout (ZI )

= w7
a' | mzout (ZI )

out

_a, fym, ()
a,m,, ()

= Yout (6)

The Eq. 6 indicates that for every fuzzy controller EVFC designed with EV, there exists an equivalent fuzzy
controller designed with CT if f is one-to-one and onto. Therefore, EV ® CTis proved.

(CT® EV)
With the similar approach, CT ® EV can be easily proved if f is one-to-one and onto.O]

Moreover, the discussion in this subsection can be applied to the continuous type fuzzy controllers EVFC
and CTFC with inference and composition operators other than the min and max operators used here. That is, the
restriction on the type of inference and composition operators is not necessary for the discussion here.
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V. Relationship between HT and CT

With the inference and composition operators chosen to be the min and max operators respectively, the
relationship between the height (HT) and centroid (CT) defuzzification techniques are introduced in this section.
For the construction of the fuzzy controller HTFC with HT, the universes of discourse of input variables
X, j =1,2,..., p, arefuzzily partitioned into N fuzzy sets, Ajb b=12,..,n.

1. Definition of HTFC

The fuzzy controller HTFC is defined to be afuzzy controller with the height defuzzification technique[2]. If
the output variable Y of HTFC is fuzzily partitioned into N fuzzy sets B® , with membership functions

m., (y), b =12,...,n,then the fuzzy rule base HTFC contains fuzzy rules with the form
R 1f Xy isLyj,, X is L, then Y is G,

where

L, 1 {AL A% A"

i i
and
G1{B*B?,. ,B"}
And the degree of match of the i ™ rule antecedent is

f,(X)= min(m, (X, ),eM (X)) X = (X, Xg 000 X,) %
With the height defuzzification technique utilized , the control Y, of HTFCis

_a. v fi(X)
o T ®

A f(X)

where Y, is the point at which the mGr(yi)reaches the maximum value. Note that if there is an interval of
y,[y, Y., ], such that Mg (y) reaches the maximum value for every yl [y, yu], then Yi is defined to be the
middle point of [y, yu]

2. Relationship between HT and CT

Let the fuzzy controller CTFC be defined as in the subsection .2.Then the following Theorems point out the
relationship between CT and HT.
Theorem 2 The defuzzification method CT is more flexible than HT(HTP CT).
Proof :

Let the output fuzzy set Di correspond with the output fuzzy set Q’" i - And the membership function of
the support of the output fuzzy set Di inthe fuzzy rule | is symmetrical to the point Z,, and an (Zi) reaches

the maximum value. Then the control action of the fuzzy controller CTFC is

_a,zmin(m(x,)
S, min(m (%), m (X))

out
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A,z 1(X)
-~ a, f,(x)

©)

as mentioned in Kosko's work[5].Since Di isthe corresponding fuzzy set of G,-

z =y,
where Yl isdefined asin subsection 4.1. Therefore,
o]
&1

out o]

a.i fI(X)
éi fI(X) out
And HT P CT isproved. O

Note that Theorem 2 is still correct if other inference and composition operators are utilized.

(10)

Theorem 3 If the condition

the member ship functions of the supports of the output fuzzy sets are symmetrical to the point at

which the member ship values reach the maximum values
is satisfied, the defuzzification method HT is conditionally more flexiblethan CT(CT ® HT).

It will be straightforward to show that CT ® EV , and the proof is omitted for simplicity. From the Theorem
2 and 3, Theorem 4 can be obtained easily.
Theorem 4 If the condition

the member ship functions of the supports of the output fuzzy sets are symmetrical to the point at
which the member ship values reach the maximum values
is satisfied, the defuzzification methods CT and HT are conditionally equivalent (CT « HT).

V. Reationship between HT and MM

The definitions of the fuzzy controller (MMFC) with the mean of maximum defuzzifier and the fuzzy
controller  (CTFC,) with centroid defuzzification method are presented in subsections .1and .2,

respectively. Then the relationship between CT and MM is proposed. And a simple example to illustrate the
relationship between CT and MM isprovided to end this section.

1. Definition of MMFC

Let the universes of discourse of input variable X; , ] =12,..., p and output variable Y be fuzzly

partitioned into N fuzzy sets, A]-b and B® , b =12,...,n, respectively. And the fuzzy rule base of MMFC

consistsof N fuzzy if-then rules with the form
Ry 11f XpisLy,.., X isL ;, then Yy is G,

where

and
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GI {B',B?,..,B"}.

Suppose that min and max are chosen to be the inference operator and the composition operator respectively.
Then the membership function for the control actionis

Mo () = max(min( m, , (x,),...m. (x,), Mg (¥))) (11)

wheretheindex i indicates the i ™" rule.If the universe of discourse of output variable VY is discrete and the

mean of maximum defuzzification technique[7] is utilized, then the control action Y, is

— 81 yl
= -— 12
yout 2‘- ( )

where Y, isthe point at which m, (y, ) reaches the maximumvalue, and M is the number of such points.
2. Definition of CTFC,

With the same partition in the subsection .1, the universes of discourse of the input variable X]- ,

] =12..., p, of the fuzzy controller CTFC, are fuzzily partitioned into N fuzzy sets, Ajb ,b=12,...,n.
And the universe of the output variable Z is partitioned into N, fuzzy sets, D, , i =1,2,...,n_. That is, there is

one specific output fuzzy set for each fuzzy if-then rule. Thus, the fuzzy rule base for the fuzzy controller
CTFC, consistsof N rules, and each of the fuzzy if-then rules has the form

Ritif XpisLy,.., X, isL ;, then Zis D,

where
AT {ALAYLLATY
ji jroto
If thefuzzy region
X, isLy,..., X, isL

p pi ’

is defined to be anew fuzzy set Qi , the fuzzy rules become to have the new form as
R :1f X isQ,, then Zis D,,
where

Q, represents X isL ..., X, isL ;.

With the membership function of the control action

m,, (2) = max(min( m, (X),m; (2)), (13)

the crisp control action of CTFC, using the centroid defuzzification technique is

— é| ZI mzout (ZI )
é’lmzout (ZI)

(14)

out

3. Relationship between CT and MM

Theorem 5the CT and MM with the fuzzy controller CTFC, and MMFC  defined above.
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Theorem 5 The defuzzification methods CT is conditionally more flexible than the defuzzifier

MM (MM ® CT), if the conditions

° the univer ses of the output variables are discrete
° the inference operator ismin and the composition operator is max are satisfied.

Pr oof:

If the fuzzy controller MMFC is constructed as in the subsection .1, we can design a fuzzy controller
CTFC, defined in subsection .2with

e themembership function M, (X) of the fuzzy set Q,
o ,(X):%l' it m, (X):miax(mn( m.Lli (xl),...,mLpi ((x,))
o 0 0, otherwise
° Z and Y havethe same discrete universe
° the membership function for the fuzzy set Di (Z) of the output variable Z is specified to be
iLif mg (22 max(min( m__(X,),...m, i(xp))
| ! . P (15)
1 0, otherwise
Then the membership functions for the fuzzy sets of the control action Z, isdefined to be
mzout (Z)
= max( min(m,, (X),m, (2)))
1Lif my(x)=1 and m, =1

= = _ (16)
1 0,otherwise
and the control action of CTFC, becomes
[¢}
Z — a k Zk mzout (Zk)
ot ~ T O
a K mzout (Zk )
Az
|
= ol a7
al
where Z, isthevaluesuch that M, (Z;) =1.From Eq. 15, it can be seen that
z=Y,"I;and
[o]
al=m,
|

thatis, Z,, = Y, - Thus, thefuzzy controllers CTFC, and MMFC have the same input-output mappings.
And MM ® CT isproved. O

Toillustrate the relationship between the defuzzification methods, MM and CT , asimple example is provided.
Example 1

In this example, the fuzzy controller MMFC is assumed for simplicity to be a single-input/single-output
fuzzy controller with the membership functions for the fuzzy sets of the input variables X and the output
variable Y shownin Figure 1. Let the universes of discourse of input variable X and output variable Y be

fuzzily partitioned into seven fuzzy sets which are ““negative big (nb)'", ““negative medium (nm)", ““negative
small (ns)", ““zero (ze)", ““positive'small (ps)", *"positive medium (pm)", and “"positive big (pb)". And, the fuzzy
ifthen rulesfor MMFC have the form.

R:if xisL, then yis G (18)
where Li and G represent one of the fuzzy sets of the input variable and output variable, respectively. Then
the member ship function for the control actionis
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m,,,, () = max(min( m,_ (x),m¢, (y)) 9

where the index i indicates the i " rule. Since the universe of discourse of output variable Yis discrete, the

control action Y, of MMFC is

g Y,
you = a -
t =2 M

(20)

where Y, isthe pointat which m, (y, ) reaches the maximumvalue, and M isthe number of such points.
For the fuzzy controller MMFC in this example, we can construct the fuzzy controller CTFC, with

° the member ship function in (X) of the fuzzy set Qi (see Figure 3) as

}Lof m, (x)=max(min(m, (x)))
in (X =1 . I

10, otherwise
° the member ship function mDi (Z) for the fuzzy set Di of the output variable zis

specified to be
i1 it mg(z)® max(min(m, (x))
|

m,, (x) = @1)

10, otherwise
Then the member ship functions for the fuzzy sets of the control action Z_;
m,, (2)
= max (min( Mg, (x), My (2)))
L if my(x)=1 and m, (2)=1
10,  otherwise

can be obtained as

— —

(22)

And the control action of CTFC, is
_ ékzkmzom (Zk) _ 5.. Z
ék mzout (Zk) éll

(23)

out

where Z isthevaluesuchthat M, (2)=1.To comparethe MMFC and CTFC, ,we can find that
1. for everyinput X, there are two fuzzy rules are activated. Let C; be the point at which the

member ship values of the two activated input fuzzy sets are equal (see Figure 2). Then the
control action Y,, =d.in Eq. 20 is a constant for every X, >C,. The Y,, =d, , for
every X, <C; isalso aconstant.

2. romFigure 3, the control action Z,, =d, isa constant for every X,fC,, and Z,,, =d. ,
for every Xléll is also a constant.

3. when X, =C,,Y,, isequalto (d, +d,)/2

4. Again from Figure 3 and Eq.17,the control action Z,, = (di + di_l)/2 .

Thus, the MMFC and CTFC, have same input-output mapping.

V1. Conclusions

A methodology for the analyses of the relationships between different defuzzification is proposed based on
the equivalent design of fuzzy controllers. The relationships between the centroid defuzzifier and other
defuzzification techniques ( expected value, height, and mean of maxmum ) are presented to give the idea for
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designers to select the appropriate defuzzification strategy. And the equivalent design of fuzzy controllers

provide more freedom for the construction of fuzzy controllers.

10.
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m(x)

nb nm ns ze ps pm pb

nb nm ns ze ps pm pb

Fig 1 Membership functions of the fuzzy controller MMFC.

m(x) m(y)
pPs : pmn
/.
/
N y
C d, d

Xl

Fig 2 Graphical representation of fuzzy reasoning.

m(x)

nb nm ns ze ps pm pb
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Fig 3 Membership functions of the fuzzy controller CTFC,.
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