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摘要 

基於模糊法則之模糊控制器的主要部分有歸屬函數、推論機制、組合運算元、與解模糊技術。這些主要部

分中之每一部份，均有許多可能的選擇。在此論文中，將基於等效模糊控制器之設計，討論不同與解模糊

技術間之關係。此不同與解模糊技術間關係之討論可提供設計者選擇適當解模糊技術間之參考。而等效模

糊控制器之設計亦提供更彈性之模糊控制器設計方式。 
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Abstract 

The major components of fuzzy controllers based on if-then rules are membership functions for fuzzification, 

inference mechanisms, composition operators, and defuzzification techniques. Each of these major parts may be 

selected from several possible candidates. In this paper, we will focus on the relationship analyses of the different 

defuzzification methods based on the equivalent design of fuzzy controllers. The relationship analyses of the 

different defuzzification methods give the idea for designers to select the appropriate defuzzification strategy. And 

the design approaches of equivalent controllers provide more flexibility to construct fuzzy controllers. 
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I. Introduction  

Fuzzy controllers have been successfully utilized in the complex or ill-defined dynamic systems for the last 

several years  [1,4,6,8,9]. The major parts of fuzzy  controllers based on fuzzy if-then rules are membership 

functions for fuzzification, inference mechanisms, composition operators, and defuzzification techniques. Each of 

these major parts may be selected from several possible candidates. One of key issues for the effective design of 

fuzzy controllers is to determine the suitable combination of the alternatives  for these major components. Since 

there is in general no systematic approach to obtain an effective design for fuzzy controllers, it is an interesting 

research topic to find out the relationships between possible candidates of each major component of fuzzy 

controllers. In the book of Driankov and his colleague [2], the different defuzzification techniques are evaluated 

with respect to some performance criteria. Yager and Filev [10] propose the basic defuzzification distribution 

(BADD) transformation to generalize the defuzzification approach. However, these analyses for the defuzzification 

methods are only componentwise. These componentwise analyses can not give the clear idea for the designer to 

select the appropriate defuzzifier. In this paper, the relationships  between the different defuzzification methods are 

analyzed based on the equivalent design of fuzzy controllers.  In our study, defuzzifier B is said  to be more flexible 

than the defuzzifier C if there exists an equivalent fuzzy  controller with the defuzzifier B for every fuzzy controller 

with the defuzzifier C. That is, we try to find out the systemwise relationships between different defuzzification 

techniques.  Even though the systemwise relationships between the different defuzzifiers are found only when 

some condit ions are satisfied, the analyses  would suggest clearly the proper defuzzification method for the 

system designer since the conditions are not very restrictive. Moreover, the design approaches  of equivalent 

controllers provide more flexibility to construct fuzzy controllers.   

The remainder of this paper is organized as follows. The relationships between defuzzification techniques are 

defined in Section Ⅱ. Section Ⅲ presents the relationship between the expected value and centroid defuzzifiers. 

The relationship between the height and centroid defuzzifiers  are provided in Section Ⅳ.  Section Ⅴ discusses  

the relationship between the mean of maximum [7] and centroid defuzzification techniques.  Section Ⅵ states a 

conclusion. 

II. Definitions of Relationships 

Based on the definition of the equivalent fuzzy controllers ,  

Definition 1 Two fuzzy controller, F1 and F2,are defined to be equivalent  ( denoted by F1 ⇔  F2 ) if the input-

output mappings of F1 and F2 are the same. 

the relationships between the defuzzification techniques can be defined as follows: 

Definition 2 For two defuzzification methods 1D  and 2D , 2D  is defined to be more flexible than 1D ( denoted 

by 1D ⇒ 2D  ) if for every fuzzy controller designed with 1D , there exists an equivalent fuzzy controller 

designed with 2D . 

Definition 3 For two defuzzification methods  1D  and 2D , 2D  is defined to be conditionally more flexible than 

1D  ( denoted by 1D → 2D  ) if 1D ⇒ 2D  is true only under certain conditions. 

Definition 4 For two defuzzification methods 1D  and 2D , if 1D → 2D and 2D → 1D  are true then 1D  and 

2D  are defined to be conditionally  equivalent ( denoted by 1D ↔ 2D  ) . 

With these definitions, the relationships between the centroid defuzzification ( CT ) method and other 

defuzzification methods ( expected value ( EV ), height ( HT ), and mean of maximum ( MM )) are discussed in 

the next three sections. 
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III. Relationship between EV andCT  

In this section, the fuzzy controller EVFC using the expected value method (EV) as the defuzzification 

technique and the fuzzy controller CTFC with the centroid defuzzification method CT are first defined. Then the 

relationship between EV and CT is presented.  To have the fuzzy controllers EVFC and CTFC defined, the 

universes of discourse of input variables  jx , j = 1,2,…, p, are fuzzily partitioned into n fuzzy sets, β
jA , β =1,2,…,n. 

Also, the operators  min and max are adopted as the inference and composition operators, respectively. 

1. Definition of EVFC   

For the fuzzy controller EVFC, the output variable y  is fuzzily partitioned into n  fuzzy sets 
βB , with 

membership functions ( )ym
B β , β =1,2,...  n. Thus, the EVFC is defined to be a fuzzy controller based on a 

fuzzy rule base with the 
thi  fuzzy rule as   

iR : If  1x   is   i1Λ ,..., px   is  piΛ ,  then  y   is   iΓ , 

where  

∈jiΛ {
1
jA ,

2
jA ,…,

n
jA } 

and  

∈iΓ {
1B ,

2B ,…,
nB } 

And the membership function for the control action is  

outym (y)= 
i

max (min(
i

m
1Λ ( 1x ),…,

pi
m Λ ( px ),

i
m Γ (y)))                                (1) 

where the index i  indicates the 
thi  rules. If the universe of discourse of output variable y  is discrete, then the 

control action outy  of the EVFC with the expected value defuzzification technique is  

∑
∑=

l lyout

lyoutl
out ym

ymyf
y

)(

)()( 1
                                                         (2) 

where f  is a function of y . 

2. Definition of CTFC 

The Let the output variable z  of the fuzzy controller CTFC be fuzzily partitioned into fuzzy sets 
βD  with 

membership functions ( )zm
D β , β =1,2,…,n. Then the 

thi fuzzy if-then rules for the CTFC become  

iR  :  If  1x   is  i1Λ ,…, px   is  piΛ ,  then  z   is  i∆  

where i∆  is the corresponding output fuzzy set and  

i∆ },...,,{ 21 nDDD∈  

With the membership function of the control action  

))),(),(),...,((min(max)( 11
zmxmxmzm

ipiiout piz ∆ΛΛ=                                  (3) 

the crisp control action of  CTFC using the centroid  defuzzification technique is  
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.
)(

)(

∑
∑=

l lz

l lzl
out zm

zmz
z

out

out                                                                  (4) 

3. Relationship between CT and EV  

From the definitions of the fuzzy controllers EVFC and CTFC in the subsections Ⅲ .1 and Ⅲ .2, the 

relationship of the defuzzification methods, CT and EV can be stated in the Theorem 1. And the proof of the 

Theorem 1 is also provided. 

Theorem 1    The defuzzification methods CT and EV are equivalent if the condition 

� the function f  in the Eq. 2  is one-to-one and onto  

is satisfied. That is, CT and EV are conditionally equivalent. 

Proof：  

(EV →  CT)： 

Let )( yfz = and the membership functions βD
m , 

)())(()( 1 ymzfmzm
BBD βββ == −

 

since f  is one-to-one and onto, the inverse function 
-1f  exists  and there is one and only one corresponding 

y  for every z . Also, the fuzzy set i∆  in the rule i  of CTFC is defined to have 

),()( ymzm
ii Γ∆ =   )( yfz =∀ , 

where  iΓ  is the output fuzzy set used in the rule i  of EVFC. Thus, for every input vector 

),,...,,( 2 n1 xxx X = , the membership function of  the control action of CTFC, 

)(

)))(),(),...,((min(max)( 11

ym

zmxmxmzm

out

ipiiout

y

piz

=

= ∆ΛΛ
        (5) and the crisp 

control action of CTFC using the centroid defuzzification technique is  

∑
∑=

l lz

lzl l
out zm

zmz
z

out

out

)(

)(
 

out

l lz

l ly y
ym

ymyf

out

out ==
∑

∑
)(

)()(
                                            (6) 

The Eq. 6 indicates that for every fuzzy controller EVFC designed with EV, there exists an equivalent fuzzy 

controller designed with CT if f is one-to-one and onto.  Therefore, EV →  CT is proved.  

 (CT → EV)： 

With the similar approach, CT →  EV can be easily proved if f is one-to-one and onto.�  

Moreover, the discussion in this subsection can be applied to the continuous type fuzzy controllers EVFC 

and CTFC with inference and composition operators other than the min and max operators used here.  That is, the 

restriction on the type of inference and composition operators is not necessary for the discussion here.  
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IV. Relationship between HT  and CT  

With the inference and composition operators chosen to be the min and max operators respectively, the 

relationship  between the height (HT) and centroid (CT) defuzzification techniques are  introduced in this section.  

For the construction of the fuzzy controller HTFC with HT, the universes of discourse of input variables 

,jx ,,...,2,1 pj =  are fuzzily partitioned into n  fuzzy sets, .,...,2,1, nAj =ββ
 

1. Definition of HTFC 

 The fuzzy controller HTFC is defined to be a fuzzy  controller with the height defuzzification technique[2]. If 

the output variable y  of HTFC is fuzzily partitioned into n  fuzzy sets 
βB , with membership functions 

)( ym βΒ
, ,,...,2,1 n=β then the fuzzy rule base HTFC contains fuzzy rules with the form  

:iR If 1x  is pi x,...,1Λ  is ,piΛ  then y  is ,iΓ  

where  

{ }n
jjjji AAA ,...,, 21∈Λ  

and 

{ }n
i BBB ,,, 21 K∈Γ  

And the degree of match of the 
thi  rule antecedent is  

                   ( ) )),(),...,(min( 11 pi xmxmXf
pii ΛΛ= =X ( pxxx ,...,, 21 ).                             (7) 

With the height defuzzification technique utilized , the control outy  of HTFC is  

∑
∑=

i i

i ii
out Xf

Xfy
y

)(

)(
                                                                    (8) 

where iy  is the point at which the )( ii ymΓ reaches the maximum value.  Note that if there is an interval of 

y , [ ],ul yy such that )( ym
iΓ  reaches the maximum value for every  [ ]ul yyy ∈ , then yi  is defined to be the 

middle point of [ ]ul yy  

2. Relationship between HT and CT 

Let the fuzzy controller CTFC be defined as in the subsection Ⅲ.2.Then the following Theorems point out the 

relationship between CT and HT. 

Theorem 2 The defuzzification method CT is more flexible than HT(HT⇒ CT ). 

Proof : 

Let the output fuzzy set i∆  correspond with the output fuzzy set ., ii ∀Γ   And the membership function of 

the support of the output fuzzy set i∆  in the fuzzy rule i  is symmetrical to the point iz , and )(
1 izm

iΛ  reaches 

the maximum value.  Then the control action of the fuzzy controller CTFC  is  

∑
∑

ΛΛ

Λ=
i p

pi i
out xmxm

xmz
z

pii

pi

))(),...,(min(

))((min

11
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=
∑
∑

i i

i ii

Xf
Xfz
)(

)(
                                                                       (9) 

as mentioned in Kosko's work[5].Since i∆  is the corresponding fuzzy set of iΓ  

iii yz ∀= ,  

where yi  is defined as in subsection .1.4 Therefore , 

∑
∑=

i i

i ii
out Xf

Xfz
z

)(

)(
 

out

i i

i ii y
Xf
Xfy

==
∑

∑
)(

)(
                                                          (10) 

And HT  ⇒ CT  is proved.                                                                                                 � 

Note that Theorem 2 is still correct if other inference and composition operators are utilized. 

Theorem 3 If the condition 

•  the membership functions of the supports of the output fuzzy sets are symmetrical to the point at 

which the membership values reach the maximum values  
is satisfied, the defuzzification method HT  is conditionally more flexible than )( HTCTCT → .  

It will be straightforward to show that EVCT → , and the proof is omitted for simplicity.  From the Theorem 

2 and 3, Theorem 4 can be obtained easily. 

Theorem 4 If the condition 

• the membership functions of the supports of the output fuzzy sets are  symmetrical to the point at 

which the membership values reach the maximum values  

is satisfied, the defuzzification methods CT  and HT  are conditionally equivalent )( HTCT ↔ . 

V. Relationship between HT  and MM  

The definitions of the fuzzy controller )(MMFC  with the mean of maximum defuzzifier and the fuzzy 

controller  )( 2CTFC  with centroid defuzzification method are presented in subsections Ⅴ.1 and Ⅴ.2, 

respectively. Then the relationship between CT  and MM  is proposed.  And a simple example to illustrate the 

relationship   between CT  and MM  is provided to end this section. 

1. Definition of MMFC  

Let the universes of discourse of input variable  pjx j ,...,2,1, =  and output variable y  be fuzzily 

partitioned into n  fuzzy sets, 
β
jA and 

βB , ,,...,2,1 n=β respectively. And the fuzzy rule base of  MMFC  

consists of  cn  fuzzy if-then rules with the form  

:iR  If 1x  is ,...,1iΛ  px  is piΛ , then y  is ,iΓ  

where  

{ }n
jjjji AAA ,...,, 21∈Λ  

and 



宜蘭技術學報  第九期電機資訊專輯 

106 

}.,...,,{ 21 n
i BBB∈Γ  

Suppose that min and max are chosen to be the inference operator and the composition operator respectively. 

Then the membership function for the control action is       

                                  

)))(),(),...,((min(max)( 11
ymxmxmym

ipii piyout ΓΛΛ=                                           (11) 

 

where the index i  indicates the 
thi  rule.If the universe of discourse of output variable y  is discrete and the 

mean of maximum defuzzification technique [7] is utilized, then the control action outy  is   

∑
=

=
m

l
out m

yy
1τ

                                                                            (12) 

where ly  is the point at which )( ly ym
out

 reaches the maximum value, and m  is the number of such points. 

2. Definition of 2CTFC   

With the same partition in the subsection Ⅴ.1, the universes of discourse of the input variable  jx , 

,,...,2,1 pj =  of the fuzzy controller 2CTFC  are fuzzily partitioned into n  fuzzy sets, 
β
jA , n,...,2,1=β . 

And the universe of the output variable z  is  partitioned into cn  fuzzy sets, i∆ , cni ,...,2,1= . That is, there is 

one specific output fuzzy set for each fuzzy if-then rule. Thus, the fuzzy rule base for the fuzzy controller 

2CTFC  consists of cn  rules, and each of the fuzzy if-then rules has the form 

iR : If 1x  is ,...,1iΛ  px  is piΛ , then z  is i∆ , 

where  

},...,,{ 21 n
jjjji AAAA ∈  

If  the fuzzy region 

1x  is ,...,1iΛ   px  is piΛ , 

is defined to be a new fuzzy set iΘ , the fuzzy rules become to have the new form as   

iR : If X  is iΘ , then z  is i∆ , 

where  

iΘ  represents 1x  is ,...,1iΛ  px  is piΛ . 

With the membership function of the control action 

)))(),((min(max)( zmXmzm
iiout iz ∆Θ= ,                                                    (13) 

the crisp control action of  2CTFC  using the centroid defuzzification technique is  

)(

)(

ll z

l lzl
out zm

zmz
z

out

out

∑
∑=                                                                                                (14) 

3. Relationship between CT  and MM  

Theorem 5 the CT  and MM  with the fuzzy controller 2CTFC  and MMFC  defined above. 
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Theorem 5 The defuzzification methods CT  is conditionally more flexible than the defuzzifier 

MM )( CTMM → ,  if the conditions 

l the universes of the output variables are discrete 

l the inference operator is min  and the composition operator is max are satisfied. 

Proof: 

If the fuzzy controller MMFC  is constructed as in the subsection Ⅵ.1, we can design a fuzzy controller 

2CTFC  defined in subsection Ⅵ.2 with 

l the membership function )(Xm
iΘ  of the fuzzy set iΘ , 



 =

= ΛΛΘ
Θ otherwise

xmxmXmif
Xm p

i piii

i ,0

))((),...,((min(max)(,1
)( 11  

l z  and y   have the same discrete universe 

l the membership function for the fuzzy set )(zi∆ of the output variable  z  is specified to be 



 ≥

=
otherwise

xmxmzmif
zm pi piii

i ,0

))(),...,((min(max)(,1
)( 11 ΛΛΓ

∆        (15) 

Then the membership functions for the fuzzy sets of the control action outz  is defined to be  

                                                  )(zm zout   

                                              max(= min )))(),(( zmXm
ii ∆Θ  

                                              


 ==

==
otherwise,0

1mand1)x(mif,1 ii ∆Θ
                      (16) 

and the control action of 2CTFC  becomes  

∑
∑=

k kz

kzk k
out zm

zmz
Z

out

out

)(

)(
 

∑
∑=

l

l lz

1
                                                                              (17) 

where lz  is the value such that 1)( =lz zm
out

. From Eq. 15, it can be seen that 

11 yz = , ;l∀ and 

                                     ,1 m
l

=∑           

that is, .outout yz =   Thus, the fuzzy controllers  2CTFC  and MMFC  have the same input-output mappings. 

And CTMM →  is proved.                                                          � 

To illustrate the relationship between the defuzzification methods, MM and CT , a simple example is provided.  
Example 1 

In this example, the fuzzy controller MMFC  is assumed for simplicity to be a single-input/single-output 

fuzzy controller with the membership functions for the fuzzy sets of the input variables x  and the output 

variable y  shown in Figure 1.  Let the universes of discourse of input variable x  and output variable y   be 

fuzzily partitioned into seven fuzzy sets which are ``negative big (nb)'', ``negative medium (nm)'', ``negative 
small (ns)'', ``zero (ze)'', ``positive'small (ps)'', ``positive medium (pm)'', and ``positive big (pb)''. And, the fuzzy 

if-then rules for MMFC  have the form. 

iR : If x  is  iΛ , then   y  is  iΓ                                                                 (18) 

where iΛ  and  iΓ   represent one of the fuzzy sets of the input variable and output variable, respectively. Then 

the membership function for the control action is  
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)))(),((min(max)( ymxmym
iiout iy ΓΛ=                                                       (19) 

where the index i indicates the 
thi rule. Since the universe of discourse of output variable y is discrete, the 

control action outy of MMFC is 

∑
=

=
m

t

l
out m

yy
1

                                                                             (20) 

where 1y  is the point at which )( ly ym
out

 reaches the maximumvalue, and m  is the number of such points. 

For the fuzzy controller MMFC  in this example, we can construct the fuzzy controller 2CTFC  with 

l the membership function )(xm
iΘ  of the fuzzy set iΘ (see Figure 3)  as  

( )
( ) ( )( )( )





 =

=
otherwise

xmxmif
xm ii

i

i

,0

minmax,1 ΛΘ

Θ  

l the membership function ( )zm
i∆  for the fuzzy set i∆ of the output variable z is  

specified to be 

( )
( )





 ≥

=
ΛΓ

Θ
otherwise

xmzmif
xm ii

i

i

,0

)))((min(max,1
                            (21) 

Then the membership functions for the fuzzy sets of the control action outz  can be obtained as                                             

( )zm
outz                                 

                                       )))(),((min(max zmxm iii ∆Θ=  

                                       


 ==

= ∆Θ

otherwise

zmandxmif
ii

,0

1)(1)(,1
        (22) 

And the control action of 2CTFC  is  

                                   
∑
∑=

∑
∑

=
l

l l

k kz

k kzk
out

z
zm

zmz
z

out

out

1)(

)(
                                   (23) 

where lz  is the value such that 1)( =lz zm
out

. To compare the MMFC and 2CTFC ,we can find that   

1. for every input 1x , there are two fuzzy rules are activated.  Let ic  be the point at which the 

membership values of the two activated input fuzzy sets are equal (see Figure 2).  Then the 

control action iout dy = in Eq. 20 is a constant for every .1 icx >   The 1−= iout dy  for 

every icx <1  is also a constant. 

2.  rom Figure 3, the control action iout dz =  is a constant for every icx 〉1 , and 1−= iout dz  

for every 11 cx 〈  is also a constant. 

3. when outycx ,11 =  is equal to ( ) 2/1−+ ii dd  

4. Again from Figure 3 and Eq.17,the control action ( ) 2/1−+= iiout ddz .  

Thus, the MMFC  and 2CTFC  have same input-output mapping. 

VI. Conclusions 

A methodology for the analyses of the relationships between different defuzzification is proposed based on 

the equivalent design of fuzzy controllers.  The relationships between the centroid defuzzifier and other 

defuzzification techniques ( expected value, height, and mean of maximum ) are presented to give the idea for 
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designers to select the appropriate defuzzification strategy. And the equivalent design of fuzzy controllers 

provide more freedom for the construction of fuzzy controllers. 
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Fig 1   Membership functions of the fuzzy controller MMFC. 

 
 

 
Fig 2   Graphical representation of fuzzy reasoning. 

 
 

 
Fig 3   Membership functions of the fuzzy controller CTFC2. 
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