國 立 宜 蘭 大 學

104學年度研究所碩士班考試入學

電子學試題

(電子工程學系碩士班)

准考證號碼:

《作答注意事項》

- 1.請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2.考試時間:100分鐘。
- 3.本試卷第1大題為選擇題:40分,第2~5題為非選擇題:60分,共計 100分。
- 4.請將答案寫在答案卷上。
- 5.考試中禁止使用大哥大或其他通信設備。
- 6.考試後,請將試題卷及答案卷一併繳交。
- 7.本試卷採雙面影印,請勿漏答。
- 8.本考科所需電子計算機由本校提供。

104學年度研究所碩士班考試入學 雷子工程學系碩士班 電子學考科

第1頁,共3頁

- 1. Choose the correct answer for the following questions. (40%)
 - (1) A STC network has the transfer function: $T(s) = \frac{100}{s+1}$.

If the frequency is larger than the Corner Frequency, then the gain

- (A) decreases 10 dB while the frequency increases 10 times
- (B) decreases 20 dB while the frequency increases 10 times
- (C) decreases 10 dB while the frequency increases 2 times
- (D) decreases 20 B while the frequency increases 2 times.
- (2) Compared with the pn junction under open circuit, which is correct about pn junction under reverse bias?
 - (A) Barrier of depletion region is decreased.
 - (B) Charge stored of depletion region is decreased.
 - (C) Width of depletion region is increased.
 - (D) Diffusion current is increased.
- (3) For the ideal diode circuit shown in Fig.1, the voltage $V_O = ?$

- (5) What is the circuit shown in Fig.3, where v_O is the output?
 - (A) voltage doubler
- (B) filter
- (C) limiting circuit
- (D) clamping circuit

- (6) Which is NOT correct about the Common Base amplifier?
 - (A) high voltage gain
- (B) good high frequency response
- (C) high input resistance (D) high output resistance

104學年度研究所碩士班考試入學 電子工程學系碩士班

電子學考科

第2頁,共3頁

- (7) An enhancement-type NMOS FET, with $V_t = 1$ V and $k_n' = 25 \mu \text{A/V}^2$, has its source terminal voltage = 2 V, drain terminal voltage = 3 V and a 2.5 V dc applied to the gate. What region does the device operate?
 - (A) Saturation (B) Cutoff (C) Triode (D) Active region
- (8) The main merit of Wilson current mirror, shown in Fig. 4, is
 - (A) high current gain
- (B) high voltage gain
- (C) high input resistance
- (D) high output resistance.
- (9) For the opa circuit shown in Fig.5, the Q_1 and Q_2 are for
 - (A) current source
- (B) differential amplifier
- (C) CS amplifier
- (D) frequency compensation.

Fig.5

- (10) Countinuing the above problem, the Q_8 and Q_5 are for
 - (A) current source
- (B) differential amplifier
- (C) CS amplifier
- (D) frequency compensation.
- 2. For the circuit shown in Fig.6, assume the op amp to be ideal and let $R_1 = 1 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 2 \text{ k}\Omega$, $R_4 = 20 \text{ k}\Omega$, find
 - (a) input resistance R_i
 - (b) voltage gain $A_v = v_x/v_I$
 - (c) output resistance R_o
 - (d) current gain i_4/i_1 .
 - (20%)

 $(1)I_{REF}$

Fig.4

Fig.6

- 3. For the circuit shown in Fig.7, assume $V_+=+10.7$ V, $V_-=-10.7$ V, $R_C=4$ k Ω , $R_E=10$ k Ω and BJT's $\beta=100$.
 - (a) Find the current I_C .
 - (b) Find the largest value to which R_C can be raised while the transistor remains in the active mode.

(10%)

104學年度研究所碩士班考試入學 電子工程學系碩士班 電子學考科

第3頁,共3頁

- 4. The amplifier shown in Fig.8 has the FET have $V_t = 1$ V, $k_n'(W/L) = 1$ mA/V² and $R_{sig} = 100$ k Ω , $R_G = 900$ k Ω , $R_D = R_L = 20$ k Ω , $R_S = 1$ k Ω , I = 0.5 mA. If the capacitors C_1 , C_2 and C_S are ideal infinite,
 - (a) plot the small signal equivalent circuit for the circuit, find
 - (b) R_{in}
 - (c) $A_v = v_o/v_i$
 - (d) $G_v = v_o/v_{sig}$.
 - (20%)

Fig.8

- 5. For the ideal opa circuit shown in Fig.9,
 - (a) what is the circuit's name?
 - (b) Assume that the op amp has ± 12 V output saturation levels, $R_1 = 10 \text{ k}\Omega$, $R_2 = 40 \text{ k}\Omega$ and $v_I = -5$ V, then the voltage of $v_O = ?$ (10%)

