1. (a) Sketch v_o versus time for the circuit in Figure 1. The input is a sine wave given by $v_i = 10\sin 100 \pi$ t V. Assume $V_{\gamma} = 0$ and $r_f = 0$ for both diodes. (b) Plot the voltage transfer characteristics (v_o versus v_i). (10%)

- 2. Consider the circuit in Figure 2. The transistor parameters are β =100, $V_{EB(on)}$ =0.7V, and V_A = ∞ . (a) Find the quiescent collector current I_{CQ} and emitter-collector voltage V_{ECQ} . (b) Find the small-signal parameters g_{m_i} r_{π} and r_o . (c) Determine the small-signal voltage gain A_{ν} = v_o/v_i . (20%)
- 3. The transistor characteristics I_D versus V_{DS} for an NMOS device are shown in Figure 3. (a) Is this an enhancement-mode or depletion-mode device? (b) Determine the values for K_n and V_{TH} . (c) Determine the I_{DS} in the circuit. (20%)

九十七學年度研究所碩士班考試入學 電機工程學系碩士班 電子學考科

第2頁,共2頁

- 4. Assume the op-amp in the circuit in Figure 4 is ideal. (a) Determine i_L as a function of v_I . (b) Let $R_1 = 18 \ k\Omega$ and $R_L = 2 \ k\Omega$. If the op-amp saturates at $\pm 12 \ V$, determine the maximum value of v_I before the op-amp saturates. (10%)
- 5. In the difference amplifier shown in Figure 5, $R_1 = R_3 = 10 \ k\Omega$, $R_2 = 30 \ k\Omega$, and $R_4 = 31 \ k\Omega$. Determine v_O when: (a) $v_{I1} = +1 \ V$, $v_{I2} = -1 \ V$; and (b) $v_{I1} = v_{I2} = +1 \ V$. (c) Determine the CMRR (dB). (15%)
- 6. Consider a feedback amplifier for which the open-loop gain is given by

$$A(f) = \frac{2 \times 10^3}{(1 + j\frac{f}{10^4})(1 + j\frac{f}{5 \times 10^4})(1 + j\frac{f}{10^5})}$$

- (a) Determine the frequency f_{180} at which the phase of A(f) is -180 degrees. (5%)
- (b) For $\beta = 0.0045$, determine the magnitude of the loop gain T(f) at the frequency $f = f_{180}$ and determine the gain margin. (10%)
- (c) For $\beta = 0.15$, determine the phase of A(f) when |T(f)| = 1. (10%)

Figure 4.

Figure 5.