國 立 宜 蘭 大 學

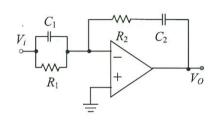
103學年度研究所碩士班考試入學

電子學試題

(電子工程學系碩士班)

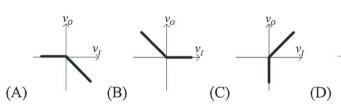
准考證號碼:

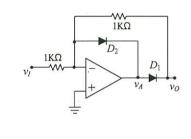
《作答注意事項》

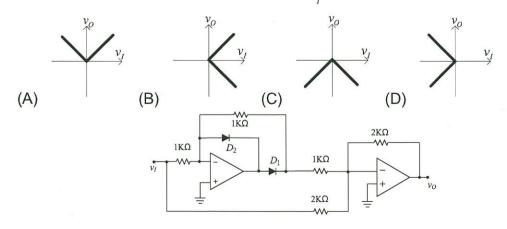

- 1.請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2.考試時間:100分鐘。
- 3.本試卷共有二大題,共計100分。
- 4.請將答案寫在答案卷上。
- 5.考試中禁止使用大哥大或其他通信設備。
- 6.考試後,請將試題卷及答案卷一併繳交。
- 7.本試卷採雙面影印,請勿漏答。
- 8.本考科所需電子計算機由本校提供。

103 學年度研究所碩士班考試入學 電子工程學系碩士班 電子學考科

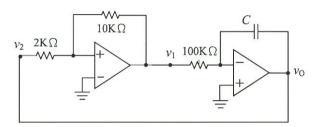
第1頁,共3頁

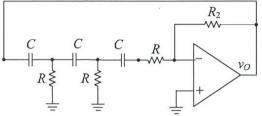

Part I. Choose the correct answer for the following questions. (40%)


- 1. Si sample S_B is doped with boron of $8\times10^{16}\,cm^{-3}$. Si sample S_P is doped with phosphorus of $8\times10^{16}\,cm^{-3}$. Si sample $S_{B\&P}$ is doped with boron of $8\times10^{16}\,cm^{-3}$ and with phosphorus of $8\times10^{16}\,cm^{-3}$. With respect to the **conductivity** of each sample at room temperature, which of the following is **correct**? (A) $S_B > S_P > S_{B\&P}$ (B) $S_{B\&P} > S_B = S_P$ (C) $S_B < S_P < S_{B\&P}$ (D) $S_P > S_B > S_{B\&P}$
- 2. In the following circuit, the voltage transfer function $\frac{V_o}{V_i}(s)$ is (A) $\frac{-\left(R_2 + \frac{1}{SC_2}\right)}{R_1 / \left(\frac{1}{SC_1}\right)}$ (B) $\frac{-\left(R_1 + \frac{1}{SC_1}\right)}{R_2 / \left(\frac{1}{SC_2}\right)}$

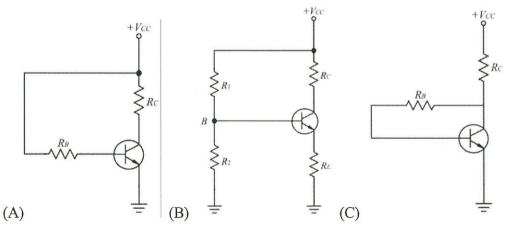

(C) $\frac{-\left(R_2 // \frac{1}{SC_2}\right)}{R_1 + \frac{1}{SC_1}}$ (D) $\frac{-\left(R_1 // \frac{1}{SC_1}\right)}{R_2 + \frac{1}{SC_2}}$

3. In the following circuit, the voltage transfer curve $\frac{v_O}{v_I}$ is


- 4. For a NPN BJT operated at room temperature, the collector current is 1mA. Its g_m is (A) 25mV (B) 40m/ Ω (C) 40 Ω (D) 25m/ Ω
- 5. Which of the following devices has 4 terminals? (A) Diode (B) JFET (C) BJT (D) MOSFET
- 6. In the following circuit, the voltage transfer curve $\frac{v_0}{v_0}$ is

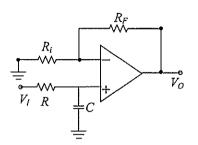

103 學年度研究所碩士班考試入學 電子工程學系碩士班 電子學考科

第2頁,共3頁


- 7. Which of the following statements is false?
 - (A) As the biasing current increases, the BJT transconductance increases linearly with respect to biasing current
 - (B) As the biasing current increases, the MOS transconductance increases linearly with respect to biasing current
 - (C) The BJT transconductance increases exponentially with respect to $V_{\rm BE}$
 - (D) The MOS transconductance increases linearly with respect to V_{GS} .
- 8. The output v_O of the following circuit is
 - (A) square wave
 - (B) triangular wave
 - (C) sinusoidal wave
 - (D) impulse wave.

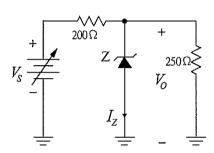
- 9. The following figure shows a phase-shift oscillator circuit. The OP amplifier is assumed to be ideal. The oscillation frequency is R_2
 - (A) $\frac{\sqrt{6}}{2\pi RC}$ (B) $\frac{\sqrt{3}}{2\pi RC}$ (C) $\frac{1}{2\pi\sqrt{3}RC}$
 - (D) $\frac{1}{2\pi\sqrt{6}RC}$

10. Which of the following circuits has a temperature-invariant operating point (I_C, V_{CE}) ?


(D) all of three circuits shown above.

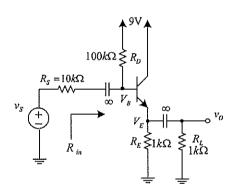
103 學年度研究所碩士班考試入學 電子工程學系碩士班 電子學考科

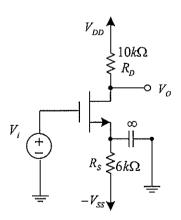
第3頁,共3頁


Part II. Calculate and Answer the following questions. (60%)

1. **Derive** (5%) the transfer function $\frac{V_o}{V_i}(s)$ of the following circuit to **verify** (5%) what kind of a filter is.

2. (10%) Assume that the breakdown voltage of the zener diode shown in the circuit is 5V. Suppose the required minimum current I_z is 1 mA and the maximum power dissipation of the zener diode is 50 mW.


Please **derive** the DC range of V_s such that the circuit can provide $V_o = 5V$ normally.


3. For the BJT circuit shown below, $\beta = 200$.

Please find

- $(1)I_{E}$ (4%)
- $(2)V_E$ (4%)
- $(3) V_B (4\%)$
- (4) the input resistance R_{in} (4%)
- (5) the voltage gain v_o/v_s (4%)

- 4. Due to the bias devices in the amplifier circuit shown below, $I_D = 1mA$ and $g_m = 1mA/V$. Assume the r_O effect is neglected.
 - (1) Find C_s if the pole frequency associated with the capacitor C_s is 10Hz. (5%)
 - (2) **Find** the zero frequency associated with the capacitor C_s . (5%)
 - (3) Calculate the DC voltage gain of this amplifier. (5%)
 - (4) Find zero frequency and pole frequency if the resistor R_s is replaced by an ideal current source. (5%)

